# <mark>ו 4</mark>

4-2 4-4 4-4 4-6 4-7 4-7 4-8

4-9

4-10 4-11 4-12 4-13 4-13 4-13

4-14

4-15

4-16 4-18 4-19 4-19 4-20 4-21

4-22

4-24

4-25 4-26 4-27

4-29 4-29 4-29

4-31

4-32 4-33

4-35

4-36 4-36 4-37 4-38 4-38 4-39 4-39 4-40 4-41 4-41

4-42

4-42 4-43 4-44

4-45

4-46

AND 4-24 4-25

Ć

## trol

|                                                 | Continu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 | Power Monitoring and Con<br>PowerLogic™ Energy and Power Management Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| rer Monitoring<br>tware                         | PowerLogic <sup>™</sup> Energy and Power Management Systems Power Monitoring Software StruxureWare Power Monitoring Expert Software StruxureWare PowerSCADA Expert Power Quality Meters — ION8650 ION8650 Power and Energy Meters ION7550 and ION7650 Power and Energy Meters Series 4000 Circuit Monitor PowerLogic ION7400 Utility Feeder Meter PowerLogic ION7400 Utility Feeder Meter PowerLogic PM8000 Power and Energy Meters Series 5000 Power Meters ION6200 Power Meters ION6200 Power and Energy Meter Series 3500 Energy and Power Meter PowerLogic PM3000 Power and Energy Meters Series 3500 Energy and Power Meter PowerLogic PM3000 Power and Energy Meters iEM3000 Energy Meter PowerLogic Energy Meter PowerLogic Energy Meter PowerLogic Energy Meter PowerLogic Enercept™ Meter Multi Circuit Energy Meters PowerLogic Branch Circuit Power Meter PowerLogic Submeter Display Communications |
| Ethernet Gateways                               | Com'X Data Loggers and Energy Servers<br>Link150 Ethernet Gateway<br>Engineering Services<br>Integration and Equipment<br>System Integration<br>Factory Assembled Equipment<br>PowerLogic High Density Metering<br>Support Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                 | Sepam Digital Protective Relays<br>Arc Flash Protection and Mitigation Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vamp 321 Arc Flash<br>Protection and Mitigation | ReactiVar™                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                 | Reactive Power Compensation and Harmonic Mitigation<br>Low Voltage Fixed Capacitors<br>LV Standard Automatic Capacitor Banks<br>LV Anti-Resonant and Filtering Automatic Capacitor Banks<br>Current Transformer Selection Information<br>LV Transient Free Reactive Compensation Capacitor Banks<br>Medium Voltage Fixed Capacitors<br>Medium Voltage Metal Enclosed Capacitor Systems<br>High Voltage Reactive Power Compensation Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AccuSine AccuSine                               | Accusine ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PCS+ PFV+                                       | PFV+ Active Harmonic Filter<br>PFV+ Active Harmonic Filter<br>Current Transformers<br>Hybrid VAR Compensator (HVC)<br>VarSet Low-Voltage Capacitor Banks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



|           | -              |           |
|-----------|----------------|-----------|
|           | VarSet Lov     | v-Voltage |
|           |                |           |
|           |                |           |
| 2017 Schr | eider Electric | •         |

StruxureWare Power Monitoring

Expert Software

ION8650

Power and

Energy Meters

PowerLogic PM8000

Power and

Energy Meters

Com'X Data Loggers

and Energy Servers

Sepam Series 80

00

ReactiVar Low Voltage

Automatic Capacitor Bank

AccuSine

0

.....



Join the Next Generation of Power and Energy Management More performance. More intelligence. More integration.

Our industry-leading systems offer the latest in technological advancements to help you simultaneously maximize reliability, availability, and quality, as well as improve operational and cost efficiency for your entire enterprise. You'll benefit from:

Holistic approach

Our solutions aggregate data from all your energy assets, including power, building, and process systems, into one user-friendly view so you can make more informed decisions and address problems efficiently.

Actionable intelligence

Our solutions provide real-time and historical information to multiple stakeholders anywhere in the world, including easy-to-use analytics, alarms and controls, as well as regulatory compliance and financial reporting.

Proactive capabilities

Our sophisticated products help you analyze and identify future needs so you can develop a long-term plan for things like energy purchasing, demand response, load changes, and equipment maintenance or replacement.





Superior Energy Management Delivers cost and operational efficiencies

#### Don't settle for fragmented views and unreliable data

Maximize performance with a fully integrated power management solution

You'll benefit from our decades of expertise in electrical system management, hardware and software development, and integration. Our solutions are designed for compatibility so your installation is both optimized and more efficient. Our systems are modular and interoperable for better continuity of supply, enhanced safety for people and equipment, and more effective monitoring and control. Plus, our full range of in-person and remote services keep your system operating at peak performance.



4

POWER MO



## Introduction

schneider-electric.us

## PowerLogic™ Energy and Power Management Systems

Application

|                         |                                                   | Data Presentment & Management                                            |                        | Data                                                                         | na                                                                               |                                                                  |  |
|-------------------------|---------------------------------------------------|--------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|--|
|                         |                                                   | Enterprise Online Energy Analysis                                        |                        | Supervisory Control &<br>Data Acquisition                                    | Power Monitoring System                                                          | Tenant Submetering                                               |  |
|                         |                                                   | Data Centers;<br>Industrial Buildings, Property<br>Management, Utilities | Utilities              | Water/Wastewater, Heavy<br>Process Industry, Data<br>Centers, Critical Power | Industrial, large<br>commercial buildings,<br>Military Base <u>s, Healthcare</u> | Commercial Buildings,<br>Government Buildings,<br>Military Bases |  |
|                         | Meter Application                                 |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Automatic Meter Reading                           |                                                                          |                        | •                                                                            |                                                                                  | ••                                                               |  |
|                         | Revenue Metering                                  |                                                                          |                        | •                                                                            | ••••                                                                             | ••                                                               |  |
|                         | WAGES Utility Pulses                              |                                                                          |                        |                                                                              | •••                                                                              |                                                                  |  |
|                         | Sub-DIIIINg<br>Measurement &                      | •••                                                                      | •••                    |                                                                              |                                                                                  | ••••                                                             |  |
|                         | Verification                                      | ••••                                                                     | ••                     |                                                                              | •••                                                                              |                                                                  |  |
|                         | Cost Allocation & Utility Billin                  | ng                                                                       |                        |                                                                              |                                                                                  |                                                                  |  |
| Cost                    | Energy Usage Analysis<br>Procurement Ontimization | •••                                                                      | •••                    | •                                                                            | ••                                                                               | •                                                                |  |
| Management              | Allocate Energy Costs                             | •                                                                        |                        | •                                                                            | •                                                                                |                                                                  |  |
|                         | Interval Benchmarking &                           |                                                                          | •••                    | •                                                                            |                                                                                  |                                                                  |  |
|                         | Profiling<br>Total Load Aggregation               |                                                                          |                        |                                                                              | · · · · · · · · · · · · · · · · · · ·                                            |                                                                  |  |
|                         | Energy Efficiency                                 | ••••                                                                     |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Emissions Tracking                                | ••                                                                       | •••                    |                                                                              |                                                                                  |                                                                  |  |
|                         | Power Factor Correction                           | ٠                                                                        | •                      |                                                                              | •••                                                                              |                                                                  |  |
|                         | Peak Demand Reduction                             | ••                                                                       | •                      | •••                                                                          | •••                                                                              |                                                                  |  |
|                         | Curtailment                                       |                                                                          |                        | •••                                                                          | •••                                                                              |                                                                  |  |
|                         | Improve Maintenance Pract                         | ices                                                                     |                        |                                                                              | 1                                                                                |                                                                  |  |
|                         | Troubleshooting                                   |                                                                          |                        | •••                                                                          | ••••                                                                             |                                                                  |  |
|                         | Equipment Monitoring:                             |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | wansformers, MCCs,<br>switchgear, switchboards,   |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | circuit breaker status,                           |                                                                          |                        | •••                                                                          | ••••                                                                             |                                                                  |  |
|                         | capacitors, generators,                           |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | etc.                                              |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
| Ensure<br>Power         | Facility Planning                                 |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
| Quality                 | Identity Equipment<br>Capacity                    |                                                                          |                        |                                                                              | •••                                                                              |                                                                  |  |
|                         | Determine Transformer<br>Stress                   |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Equipment Asset                                   |                                                                          |                        | ••                                                                           |                                                                                  |                                                                  |  |
|                         | Uptimization                                      |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Balance Circuit Loading                           |                                                                          |                        |                                                                              | •••                                                                              |                                                                  |  |
|                         | Balance Generator Usage                           |                                                                          |                        |                                                                              | •••                                                                              |                                                                  |  |
|                         | Optimize Chiller &<br>Mechanical Equipment        |                                                                          |                        |                                                                              | •                                                                                |                                                                  |  |
|                         | System Monitoring & Analys                        | sis                                                                      |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Transient Voltage                                 |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Sag/Swell Disturbance                             |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Monitoring<br>Power Quality & Harmonic            |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
| Network                 | Analysis                                          |                                                                          |                        |                                                                              | ••••                                                                             |                                                                  |  |
| Management              | Power Quality<br>Compliance                       | ••••                                                                     |                        | •                                                                            | •••                                                                              |                                                                  |  |
|                         | Alarm & System Diagnositic                        | s                                                                        |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Electrical Distribution                           | •                                                                        |                        | •••                                                                          | ••••                                                                             |                                                                  |  |
|                         | Waveform capture                                  |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | viewing                                           |                                                                          |                        |                                                                              | ••••                                                                             |                                                                  |  |
|                         | Remote alarm notification<br>Energy Services      |                                                                          |                        | ••••                                                                         | •••                                                                              |                                                                  |  |
|                         | Total Energy Control                              |                                                                          | see Engineering        |                                                                              |                                                                                  |                                                                  |  |
|                         | Services                                          | ••••                                                                     | Services, page<br>4-27 |                                                                              | •••                                                                              |                                                                  |  |
|                         | Peak Shaving/Generator<br>Control                 |                                                                          |                        | ••••                                                                         | ••                                                                               | see Engineering<br>Services, page 4-27                           |  |
|                         | Load Management/                                  | see Engineering Services                                                 | , page 4-27            | ••••                                                                         |                                                                                  | 00.1.000, page 7-21                                              |  |
|                         | Snedding                                          |                                                                          |                        |                                                                              | •••                                                                              |                                                                  |  |
|                         | Advanced Reliability Service                      | es                                                                       |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Auto Throw Over (ATO)                             |                                                                          |                        | ••••                                                                         | ••                                                                               |                                                                  |  |
| Engineering<br>Services | Emergency Power Supply<br>System Test Reporting   |                                                                          |                        |                                                                              | ••••                                                                             |                                                                  |  |
|                         | Sequence of Events<br>Recording (1ms time/        | see Engineering Services                                                 | , page 4-27            |                                                                              |                                                                                  | see Engineering                                                  |  |
|                         | stamp)<br>GPS Time Stamping                       |                                                                          |                        | ••••                                                                         | •••                                                                              | Services, page 4-27                                              |  |
|                         | Power System Control                              |                                                                          |                        | ••••                                                                         | •                                                                                |                                                                  |  |
|                         | Network Protection                                |                                                                          |                        | ••••                                                                         | ••                                                                               |                                                                  |  |
|                         | Consulting Services                               |                                                                          |                        |                                                                              |                                                                                  |                                                                  |  |
|                         | Arc Flash)                                        |                                                                          |                        |                                                                              | a 4_27                                                                           |                                                                  |  |
|                         | Power System                                      | er System                                                                |                        |                                                                              |                                                                                  |                                                                  |  |





- · Manage power quality, availability, and reliability
- Optimize use of your electrical and infrastructure assets
- Drive energy efficiency initiatives and improve financial performance

| The local data of  | 2 2 2                    | - Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|--------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| MELICAN            | Correct!                 | Conversion a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| ngen               | anne                     | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A DATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                    |                          | 1-1-1-12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 1 40 -             | And and a second         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|                    | an Australia (d. Asseri) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |
| 100 400            |                          | and some local division in which the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                    |                          | The second secon | Bernarias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                    |                          | State Annual State State State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Statute C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                    |                          | Designation of the local division of the loc | And and a second |      |
| 1                  |                          | Contractory of the local division of the loc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| 12                 | COMPLEX OF A             | Next Association . Restal doctories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | An Address of Address  | -    |
|                    | and the second           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Annual Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 11 |
| _                  |                          | Avera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| American page dash |                          | Energy per heterty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11   |
|                    | and the second           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                    |                          | = V 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                    | 445                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| and the second     | 1 mm                     | Strike States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | States of the local division of the local di |      |
|                    | that a little            | The local distance of  | Tillontestone de d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| En Hill            | the state of             | The little states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EN VIELEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

#### Modular Design:

Power Monitoring Expert also features many application modules that add specific functionality to extend the base platform. Available modules include

- Energy Analysis
- UPS Performance
- Breaker Performance
- Energy Cost Allocation & Billing
- · Automated Generator Testing

## StruxureWare Power Monitoring Expert Software StruxureWare Power Monitoring Expert

StruxureWare<sup>™</sup> Power Monitoring Expert is an integrated power & energy management software platform that enables you to optimize your power distribution infrastructure, maximize operational efficiency, and improve your bottom-line performance. This complete, interoperable, and scalable solution will help you

- · Maximize facility uptime and reliability
- · Analyze and mitigate power quality related issues
- Track and optimize equipment performance
- Analyze energy consumption, uncover savings opportunities and accurately allocate energy related costs
- Enable compliance with power quality and energy standards such as ANSI/IEEE and ISO50001

#### **Typical Applications**

- Monitor the facility electrical network to verify reliable operation and proactively
  optimize performance
- Maximize facility uptime by improving response to power-related events and restore operations quickly
- Perform root cause analysis to power-related disturbances through sequence of events reporting
- · Analyze and isolate the source of power quality problems
- Analyze total energy use from all electrical and piped utilities identify waste and reduce cost
- Improve sustainability performance with greenhouse gas emissions tracking and industry compliance reporting
- Identify billing discrepancies and avoid contract penalties by validating utility bills to verify accuracy
- Allocate energy costs to departments to drive accountability, awareness and support energy action programs like ISO50001
- Reduce peak demand and power factor penalties with monitoring, alerts, and corrective actions
- Negotiate rates with energy suppliers and enable participation in demand response programs
- Confirm return on investment for infrastructure improvements with advanced reporting and analysis
- Optimize existing infrastructure capacity and avoid over-building
- Prolong asset life with proactive maintenance and optimization

#### **Functional Components:**

- Power quality analytics
  - Monitor events and waveform plotting system-wide
  - Monitor harmonics, K-factor, crest factor, symmetrical components
  - Diagnose and isolate PQ problems to increase reliability
  - Automatically detect and report on voltage disturbances
  - Quickly evaluate PQ events plotted on standard ITIC curve
- · Customized real-time monitoring
  - Access real-time status of sensitive power distribution components
  - Trend chart tools with customized views to reveal patterns and anomalies quickly
- · Data analytics and visualization
  - Smart dashboards with configurable presentation widgets and kiosk options
  - Powerful graphics templates and libraries
  - Automated power quality reports and waveform analysis tools
  - Comprehensive templates for energy and power reporting, with flexible report distribution options
- Alarm and event management
  - Powerful alarm triggering, notification, and analysis tools
  - Accurate time-stamped sequence of events reporting for power system event root cause analyses
- Robust technical infrastructure
  - Solid data acquisition architecture including ready-to-use communications drivers with many electrical distribution devices
  - Fully compatible with current operating systems and databases
  - Interoperable with integration to other systems and devices through open data and protocol standards (ODBC, OPC, XML, Modbus, Web/SOAP Services)
  - Scalable to thousands of metered points through flexible deployment options

Ь

POWER MONITO





## StruxureWare Power Monitoring Expert Data Center Edition

- Decrease the number and duration of unplanned outages
- Manage power capacity and reduncancy
  Improve effectiveness of maintenance
- Improve enectiveness of maintenance activities
- Improve power distribution efficiency
- Support energy cost allocation and billing



Segment Editions:

meet your needs.

## StruxureWare Power Monitoring Expert Data Healthcare Edition

- Improve energy availability
- Manage power system reliability
- Perform power quality analysis and management
- Support energy efficiency initiatives to improve financial performance



Power Monitoring Expert also features segment-specific solutions for data centers, healthcare, industry and buildings, delivering pre-engineered functionality customized to

## StruxureWare Power Monitoring Expert Data Buildings Edition

- Ensure electrical system health
- Optimize operational efficiency
- Gain energy insight
- Improve energy accountability

| Description                                                                                 | Catalog Number |
|---------------------------------------------------------------------------------------------|----------------|
| Power Monitoring Expert Standard Edition BASE license (includes 1 Engineering<br>Client)    | PSWSANCZZSPEZZ |
| Power Monitoring Expert Data Center Edition BASE license (includes 1 Engineering<br>Client) | PSWSDNCZZSPEZZ |
| Power Monitoring Expert Healthcare Edition BASE license (includes 1 Engineering<br>Client)  | PSWSHNCZZSPEZZ |
| Power Monitoring Expert Buildings Edition BASE license (includes 1 Engineering<br>Client)   | PSWSBNCZZSPEZZ |
| 5 Device Pack for Power Monitoring Expert software                                          | PSWDANCZZNPEZZ |
| 25 Device Pack for Power Monitoring Expert software                                         | PSWDBNCZZNPEZZ |
| 50 Device Pack for Power Monitoring Expert software                                         | PSWDCNCZZNPEZZ |
| 100 Device Pack for Power Monitoring Expert software                                        | PSWDDNCZZNPEZZ |
| 200 Device Pack for Power Monitoring Expert software                                        | PSWDFNCZZNPEZZ |
| Unlimited Devices for Power Monitoring Expert software                                      | PSWDZNCZZSPEZZ |
| Engineering Client for Power Monitoring Expert software                                     | PSWCENCZZNPEZZ |
| Web Client for Power Monitoring Expert software                                             | PSWCWNCZZNPEZZ |
| Unlimited Engineering and Web Clients for Power Monitoring Expert software                  | PSWCZNCZZSPEZZ |
| Event Notification Module for Power Monitoring Expert software                              | PSWMVNCZZSPEZZ |
| Cost Allocation & Billing Module for Power Monitoring Expert software                       | PSWMBNCZZSPEZZ |
| Breaker Performance Module for Power Monitoring Expert software                             | PSWMXNCZZSPEZZ |
| Energy Analysis Module for Power Monitoring Expert software                                 | PSWMZNCZZSPEZZ |
| Energy Awareness Module for Power Monitoring Expert software                                | PSWMYNCZZSPEZZ |
| UPS Performance Module for Power Monitoring Expert software                                 | PSWMUNCZZSPEZZ |
| EPSS Module for Power Monitoring Expert software (HealthCare)                               | PSWMENCZZSPEZZ |
| Generator Performance Module for Power Monitoring Expert software (Data Centers)            | PSWMGNCZZSPEZZ |
| IT Billing Module for Power Monitoring Expert software (Data Centers)                       | PSWMTNCZZSPEZZ |
| Power Capacity Module for Power Monitoring Expert software (Data Centers)                   | PSWMPNCZZSPEZZ |
| Power Efficiency Module for Power Monitoring Expert software (Data Centers)                 | PSWMNNCZZSPEZZ |
| SQL Server 2012 License - 2 COREs                                                           | IE7SQLCZSNPEZZ |

© 2017 Schneider Electric All Rights Reserved

6/20/2017

## **Power Monitoring Software**





## StruxureWare™ PowerSCADA Expert is electrical distribution network monitoring and control software that provides vital tools to enhance your power system reliability and operational efficiency. Its powerful architecture combines our proven expertise in electrical distribution with the speed and control of high-performance SCADA to reduce outages while increasing power system efficiency. An excellent fit for virtually every industry and application, PowerSCADA Expert delivers exceptional scalability so that it can grow to match your changing business requirements while driving down the total cost of ownership. Components interact seamlessly across Schneider Electric's extensive product portfolio and third party suppliers.

- Dynamic electrical network view to improve production, reduce costs and boost safety
- Highly reliable monitoring and control tailored to unique electrical network needs
- Detailed electrical information across the multi-vendor network
- Fast issue resolution and reporting to improve electrical network guality and energy ٠ use
- Report KPIs, energy costs, and filtered alarming .

StruxureWare PowerSCADA Expert

· Provides accurate and actionable information in real time Highlights issues, remediation, and their impacts

· Increase uptime of power systems

- Real-time visualization of the network .
- Disturbance waveform views for analysis and control for remediation

For quoting and pricing, please contact PowerLogic Sales at 615-287-3535.

## PowerLogic ION EEM Software

PowerLogic<sup>™</sup> ION EEM is a complete Enterprise Energy and Sustainability Management System (EESMS) to provide energy data warehousing capabilities integrating data from multiple sites and disparate systems. For example, the EESMS will be capable of integrating data from building and process systems, power management systems, energy billing and pricing systems, business and accounting systems, weather services, spot-market energy pricing feeds etc. to facilitate green economic policies (such as reducing CO2 emissions), energy conservation measures, or sustainability targets.

#### Typical applications:

- Display visually rich energy intelligence dashboards to drive energy behavior change.
- Allocate costs and usage across facilities, departments, and other organizational units.
- Benchmark, measure and verify energy key performance indicators for performance versus target.
- Track and manage environmental impact carbon/GHG emissions and carbon inventories (by source, scope and pollutant), using appropriate global emission factors
- Reduce peak demand surcharges and power factor penalties. ٠
- Identify billing discrepancies.
- Model energy accurately using statistical regression techniques. ٠
- Forecast energy needs and compare rates for efficient procurement. .
- Facilitate participation in load curtailment programs.
- Track performance of energy and sustainability programs, and assess cumulative savings and return on investments.
- Manage energy and sustainability projects and scenarios and assess potential financial impact prior to implementation.
- Store and manage energy invoices in a central repository.

#### Key features:

- True enterprise-level software architecture: data quality assurance, data warehouse, web framework
- Web portal: personalized dashboards, key performance indicators, charts, trends, real-time conditions
- Reporting: rich and customized content, support for complex data and graphics, scheduled distribution
- Trending: advanced visualization, dimensional analysis, prediction, statistical rollups
- Modeling: regression analysis, normalization, correlation, integration of all relevant drivers and contextual data
- · Billing: built-in rate engine and rate wizard
- Power quality analysis: wide-area event monitoring, classification, filtering, correlation
- Alarms and events: triggering on complex conditions, notification, logging
  - Integration: data acquisition systems, weather and pricing feeds, other enterprise applications (e.g. BAC, ERP)
- Greenhouse Gas Emissions (CO2) Reporting
- For quoting and pricing, please contact PowerLogic Sales at 615-287-3535.

.alibilit. Personalized dashboards help management and operations personnel monitor all aspects of energy use

| I lab logod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lars & I manad                                              | Intern A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dil Summary                                                 | Contraction of the Contraction o |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plant Hain - Janua                                          | a the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| International In | Designer .                                                  | th fam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| ha fee th's<br>money opposit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | that face USL<br>shares sheet not                           | BBI Cest breakdown by Cele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rgery |
| 144 (011) (02 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Second Second Monthly of<br>particular (SE-section)<br>per- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |
| Sear Rose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |
| Losse (hep-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V     |

Produce aggregate billing, load profile, cost allocation, power quality forecasting or budget reports to help inform stakeholders and track results against goals.

Power Quality Meters - ION8650

SQUARE D by Schneider Electric schneider-electric.us





## **ION8650 Power and Energy Meters**

The web-enabled PowerLogic ION8650 is used to monitor electric distribution networks, service entrances and substations. It enables businesses to manage complex energy supply contracts that include power quality guarantees. Low-range current accuracy makes it ideal for independent power producers and cogeneration applications that require the accurate bi-directional measurement of energy. It is well suited to load curtailment, equipment monitoring and control and energy pulsing and totalization applications. Integrate it with Power Management Software applications.

### ION8650 Power and Energy Meter Features

### Feature set C includes:

- 9S, 35S, 36S socket and switchboard cases
- True RMS 3-phase voltage, current, power and meets stringent ANSI revenue metering standards including ANSI C12.20 0.2 and Class 2, 10, & 20
- Power quality: sag/swell, individual, even, odd, total harmonics to the 31st and symmetrical components
- 32MB log/event memory, min/max for any parameter, historical logs up to 80 channels, timestamp resolution to 0.001 seconds and GPS time synchronization
- Transformer/line loss compensation and Instrument transformer correction
- Communications: Ethernet, Serial, Modem, Internet and Ethernet to serial gateway and ION, DNP 3.0, Modbus RTU, Modbus TCP, MV-90 protocols, IEC 61850
  - C model limited to IR + 2 other ports at one time. Ports can be enabled/disabled by user
- · Dial-out capability when memory is near full
- Multi-user, multi-level security with control and customized access to sensitive data for up to 50 users
- Data push capability through SMTP (email)
- 65 setpoints math, logic, trig, log, linearization formulas
- · Password protection and anti-tamper seal protection
- Built-in I/O: 4 KYZ digital outs and 3 form A digital ins, 4 KYZ digital outs and 1 form A digital out and 1 form A digital in, an optional external I/O expander provides additional I/O

#### Feature set B adds the following to feature set C:

- Harmonics-individual, total even, total odd up to the 63rd
- 64MB standard memory
- Historical logs up to 320 channels
- Modbus RTU Master on serial ports
- · Cycle setpoint minimum response time

#### Feature set A adds the following to feature sets C and B:

- Waveform capture up to 1024 samples/cycle, PQ compliance monitoring, flicker to EN50160 Ed2, IEC 61000-4-7/4-15 (also configurable to IEEE519 2014, IEEE159, SEMI) CBEMA/ITIC
- Transient detection to 6517µs at 60Hz;
- Harmonics: magnitude, phase and inter-harmonics to the 50th
- 128MB standard memory
- Max 96 cycles of waveform logs and 800 channels of historical logs

#### Table 4.1: Typical PowerLogic ION8650 Power and Energy Meter Ordering Configurations

| Description                                                                                                                                                                                                              | Catalog No.      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ION8650, feature set A, 9S socket base, 5 A nominal current inputs,<br>10MB memory, 127–177 Vac, 60 Hz, communications card with:<br>10BaseT, RS-232/485, RS-485, Optical port, 4 Digital Outputs, 3 Digital<br>Inputs   | S8650A0C0E6E1B0A |
| ION8650, feature set A, 35S socket base, 5 A nominal current inputs,<br>10MB memory, 120–480 Vac, 60 Hz, communications card with:<br>10Base T, RS-232/485, RS-485, Optical port, 4 Digital Outputs, 3<br>Digital Inputs | S8650A1C0E6E1B0A |
| ION8650, feature set C, 9S socket base, 5 A nominal current inputs,<br>2MB memory, 120–277 Vac, 60 Hz, communications card with: RS-232/<br>485, RS-485, Optical port, 4 Digital Outputs, 3 Digital Inputs               | S8650C0C0E6A0B0A |
| ION8650, feature set C, 355 socket base, 5 A nominal current inputs,<br>2MB memory, 120–277 Vac, 60 Hz, communications card with: RS-232/<br>485, RS-485, Optical port, 4 Digital Outputs, 3 Digital Inputs              | S8650C1C0E6A0B0A |

6/20/2017

## PowerLogic™ Energy and Power Management Systems

## Power Quality Meters - ION7550 / ION7650





## ION7550 and ION7650 Power and Energy Meters

Used at key distribution points and sensitive loads, the web-enabled PowerLogic ION7550 and PowerLogic ION7650 meters combine a wealth of advanced features from power quality analysis capabilities, revenue accuracy and multiple communications options, through web compatibility, and control capabilities. Both are compatible with PowerLogic Power Management Software applications and can be integrated with other energy management or building control systems through multiple communication channels and protocols.

The meters are ideal for compliance monitoring, disturbance analysis, cost allocation and billing, demand and power factor control and equipment monitoring and control. The meters have a high visibility, adjustable front panel display that can depict TOU, harmonics, event logs, phasers, and instantaneous power parameters. They meet stringent ANSI C12.20 0.2, Class 10 & 20 revenue metering standards.

#### PowerLogic ION7550 and ION7650 Power and Energy Meter Features:

- 3.5" x 4.5" (87 x 112 mm) backlit LCD display
- True RMS 3-phase voltage, current, and power that meets stringent ANSI C12.20 0.2, Class 2, 10, & 20
- Power quality: sag/swell, harmonics individual, even, odd, total to the 63rd, waveform capture at 256 samples/cycle
- 5MB log/event memory (10MB optional), waveform logging up to 96 cycles, up to 800 channels historical, min/max, timestamp resolution to 0.001 seconds, GPS time synchronization and historical trends through front panel
- Communications: fiber, Ethernet, serial, internal modem, optical port, and a gateway functionality, ION, DNP 3.0, Modbus RTU - master & slave, Modbus TCP, MV-90, and IEC 61850. IEC 61850 only available with Ethernet options
- Dial-out capability when memory is near full
- Data push capability through SMTP (email)
- Multi-user, multi-level security with control and customized access to sensitive data for up to 16 users
- 65 configurable 1/2 cycle setpoints for single, multi-condition and dial out on alarm and math, logic, trig, log, linearization formulas
- · Password protection and anti-tamper seal protection enhance meter security
- Extensive standard I/O includes: 8 digital inputs, 4 digital outputs and 3 onboard relays
  - Disturbance direction detection determines disturbance location and direction relative to the meter.
- Alarm setpoint learning analyzes the circuit and recommends optimum alarm setpoints to minimize nuisance or missed alarms.
- Customize metering or analysis functions at your work station, without hard wiring via ION Frameworks technology.

#### The ION7650 has all the features of the ION7550 and adds:

- · Waveform capture up to 1024 samples/cycle
- Transient detection to 17µs at 60Hz
- Harmonics: magnitude, phase and inter-harmonics to the 40th
- Flicker to EN50160 and IEC 61000-4-7/4-15 (also configurable for IEEE 519-1992,
- IEEE159, SEMI), plus CBEMA/ITIC • Symmetrical components
- Power quality measurements per IEC 61000-4-30 Class A, Ed. 2

#### Table 4.2: Typical PowerLogic ION7550/7650 Power and Energy Meter Ordering Configurations

| Description                                                                                                                                                                                                                           | Catalog No.      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Typical PowerLogic ION7550 Power and Energy Meter Ordering Configurations                                                                                                                                                             |                  |
| Integrated display, with 256 samples/cycle, 5 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port) plus Ethernet, standard I/O                                  | S7550A0C0B6E0A0A |
| Integrated display, with 256 samples/cycle, 5 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port), standard I/O                                                | S7550A0C0B6A0A0A |
| Typical PowerLogic ION7650 Power and Energy Meter Ordering Configurations                                                                                                                                                             |                  |
| Integrated display, with 1024 samples/cycle, 10 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port) plus Ethernet, standard I/O, EN50160 compliance monitoring | S7650B1C0B6E0A0E |
| Integrated display, with 512 samples/cycle, 5 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port) plus Ethernet, standard I/O                                  | S7650A0C0B6E0A0A |
| Integrated display, with 512 samples/cycle, 5 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port) plus Ethernet and 56k modem, standard I/O                    | S7650A0C0B6C1A0A |
| Integrated display, with 512 samples/cycle, 5 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port), standard I/O                                                | S7650A0C0B6A0A0A |
| Integrated display, with 1024 samples/cycle, 10 MB logging memory, 5 A inputs, standard power supply, standard comms. (1 RS232/RS485 port, 1 RS485, 1 Type 2 optical port) plus Ethernet, standard I/O                                | S7650B1C0B6E0A0A |

**NOTE:** Please refer to www.schneider-electric.us for the most complete and up-todate list of feature availability. Some features are optional.

Ь

#### © 2017 Schneider Electric All Rights Reserved 6/20/2017



SQUARE D by Schneider Electric schneider-electric.us

## PowerLogic<sup>™</sup> Energy and Power Management Systems



CM4000T with VFD Display

## Series 4000 Circuit Monitor

The award winning, Web-enabled PowerLogic Series 4000 Circuit Monitor (CM4000T) is the most advanced permanently mounted circuit monitor in the industry today. Designed for critical power and large energy users who cannot afford to be shut down, the CM4000T provides the ability to monitor, troubleshoot and preempt power quality problems. Transients (disturbances lasting less than one cycle) are particularly difficult to detect, due to their short duration. The CM4000T detects and captures oscillatory and impulsive transients (up to 10,000V peak, line-to-line at 5 MHz per channel) as short as one microsecond in duration. The CM4000T automatically performs a high-speed transient waveform capture and a longer disturbance capture to show the conditions surrounding an event. The CM4000T maintains a complete historical record of the number of transients per phase, along with the magnitude, duration and time of occurrence of each. It also performs a stress calculation to determine the circuits that have received the greatest stress from transient overvoltages.

- Waveform capture with up to 512 samples/cycle
- Built-in Trending and Forecasting functionality allows you to forecast energy usage up to 4 days in advance
- Sag/Swell disturbance monitoring
- · Two option card slots for field installable cards
- Optional field installable Ethernet communications card with standard and custom web
  pages
- Alarm Setpoint Learning feature allowing optimum threshold setting (patent pending)
- Multiple alarms: standard, digital, Boolean, high-speed, and disturbance alarms
- Waveshape alarm monitoring
- High speed transient voltage detection at 5 MHz per channel with field installable CVMT current/voltage module
- True RMS Metering through the 255th harmonic
- Extended waveform capture (up to 110 seconds)
- Field installable Digital/Analog I/O cards and flexible I/O extender modules
- · Harmonic powerflows up to the 40th harmonic
- Standard KYZ pulse output
- Standard 32 MB of non-volatile memory
- Integrated power quality standards including EN50160, IEC 61000-4-15 (Flicker)
- Sequence of events recording using GPS synchronization technology
- Oscillatory transient detection and recording
- UL Listed, CSA Approved, NOM Approved, FCC compliant

## PowerLogic Series 4000 Circuit Monitor Optional Displays

- High visibility remote VF (vacuum fluorescence) display
- Displays metering data, min/max values, alarms, inputs
- Remote LC (liquid crystal) display with backlighting also available
- Optional user configurable display screens

#### Table 4.3: Series 4000 Circuit Monitors

| Description                                                                                                                                                                   | Catalog No. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Series 4000 Circuit Monitors                                                                                                                                                  |             |
| Instrumentation, On-board Data Logging, Waveform Capture, Disturbance Recording, Configurable I/O, 0.04% Accuracy, Impulsive Transient Detection and Flicker (IEC 61000-4-15) | CM4000T     |
| Series 4000 Circuit Monitor Accessories                                                                                                                                       |             |
| Field installable I/O card with 3 relay outputs, 1 pulse output (KYZ) and 4 status inputs                                                                                     | IOC44       |
| I/O Extender module with 4 DC status inputs, 2 DC digital outputs, 1 analog input and 1 analog<br>output                                                                      | IOX2411     |
| I/O Extender module with 4 status inputs and 4 analog inputs (4–20 mA)                                                                                                        | IOX0404     |
| I/O Extender module with 8 status inputs                                                                                                                                      | IOX08       |
| I/O Extender module with no pre-installed I/O [1]                                                                                                                             | IOX         |
| Ethernet Communications Card; 100 MB Fiber or 10/100 MB UTP Ethernet port and 1 RS-485<br>master port                                                                         | ECC21       |
| Current/Voltage module with high speed transient detection                                                                                                                    | CVMT        |
| 4-line x 20—character liquid crystal display with backlighting                                                                                                                | CMDLC       |
| 4-line x 20—character vacuum fluorescent display with proximity sensor                                                                                                        | CMDVF       |
| 4 foot display cable                                                                                                                                                          | CAB4        |
| 12 foot display cable                                                                                                                                                         | CAB12       |
| 30 foot display cable                                                                                                                                                         | CAB30       |

#### Table 4.4: SER Time Synchronization

FCC21

| Description                                                                                                    | Catalog No.  |
|----------------------------------------------------------------------------------------------------------------|--------------|
| PowerLogic Satellite Time System, Circuit Monitor and SEPAM GPS Time Synchronization, 100 microsecond accuracy | STS3000      |
| Satellite Time Reference Module                                                                                | STRM         |
| CyTime Sequence of Events Recorder, 24 Vdc power / 24 Vdc inputs, 32 inputs, web server                        | 9788SER3200  |
| SER 3200 EZ connector for IRIG-B signal                                                                        | 9788EZCIRIGB |
| Smart Antenna Module                                                                                           | SAM          |
| Smart Antenna Module Interface Cable—200 FT                                                                    | SAIF200      |
| Power Supply, 24DC/50W, DIN-mountable                                                                          | PS080        |

IOC44 I/O Card





PowerLogic ION7400

### Applications and benefits

- Maximize profits by providing the highest output possible with the least amount of risk to availability.
- Optimize availability and reliability of electrical systems and equipment.
- Monitor power quality (PQ) for compliance and to • prevent problems.
- Meters fully supported by StruxureWare Power Monitoring Expert and PowerSCADA Expert Software.

## **Main Characteristics**

AND

- Precision metering
- PQ compliance reporting and basic PQ analysis
- Used with StruxureWare Power Monitoring Expert software, provides detailed PQ reporting across entire network
- · Onboard data and event logging
- Alarming and control
- Excellent quality: ISO 9001 and ISO 14000 certified manufacturing.

#### Table 4.5: PowerLogic ION7400 Meters

| Description                                                                                    | Catalog Number |
|------------------------------------------------------------------------------------------------|----------------|
| ION7400 Panel mount meter<br>(integrated display with optical<br>port and 2 energy pulse LEDs) | METSEION7400   |
| DIN rail mount - utility meter base                                                            | METSEION7403   |

#### Table 4.6: PowerLogic ION7400 Accessories

| Description                                                                                                                                                  | Catalog Number |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Remote display, 3 metre cable,<br>mounting hardware for 30mm<br>hole (nut & centering pin),<br>mounting hardware for DIN96<br>cutout (92x92mm) adapter plate | METSEPM89RD96  |
| Digital I/O module (6 digital inputs & 2 relay outputs)                                                                                                      | METSEPM89M2600 |
| Analog I/O module (4 analog<br>inputs & 2 analog outputs)                                                                                                    | METSEPM89M0024 |
| Display Cable, 10 meters                                                                                                                                     | METSECAB10     |



PowerLogic ION7400 with phasor display.



## PowerLogic ION7400 Utility Feeder Meter

The PowerLogic ION7400 utility feeder meter is a highly accurate, extremely reliable power and energy meter with unmatched flexibility and usability. The meter combines accurate 3-phase energy and power measurements with data logging, power quality analysis, alarming and I/O capabilities not typically available in such a compact meter.

The panel or DIN mounted ION7400 meter is flexible enough to fit into a utility's existing billing or SCADA system, providing industry leading cost management (Class 0.2) and network management (Class S PQ) data. It is compliant with stringent international standards that guarantee their metering accuracy and power quality measurements. Ideal for installations that are responsible for maintaining the operation and profitability of a facility.

## Table 4.7: PowerLogic ION7400 Features

| Description                                                       |                                | ION7400                          |
|-------------------------------------------------------------------|--------------------------------|----------------------------------|
| General                                                           |                                |                                  |
| Use on LV and MV systems                                          |                                | •                                |
| Current accuracy (5A Nominal)                                     |                                | 0.1 % reading                    |
| Voltage accuracy (90-690 V AC L-L, 50, 60, 400 Hz)                |                                | 0.1 % reading                    |
| Active energy accuracy                                            |                                | 0.2 %                            |
| Number of samples/cycle or sample frequency                       |                                | 256                              |
| Instantaneous rms values                                          |                                | 1                                |
| Current, voltage, frequency                                       |                                | •                                |
| Active, reactive, apparent power                                  | Total and per phase            | •                                |
| Power factor                                                      | Total and per phase            | •                                |
| Current measurement range (autoranging)                           |                                | 0.05 - 10A                       |
| Energy values                                                     |                                | 1                                |
| Active, reactive, apparent energy                                 |                                | •                                |
| Settable accumulation modes                                       |                                | •                                |
| Current                                                           | Present and max, values        | -                                |
| Active reactive apparent power                                    | Present and max, values        | -                                |
| Predicted active reactive apparent power                          | Fresent and max. values        |                                  |
| Synchronisation of the measurement window                         |                                | -                                |
| Setting of calculation mode                                       | Block sliding                  |                                  |
| Power quality measurements                                        | Block, sharing                 | -                                |
| Harmonic distortion                                               | Current and voltage            | -                                |
|                                                                   | Via front panel and web page   | 63                               |
| Individual harmonics                                              | Via StruxurWare software       | 127                              |
| Waveform capture                                                  |                                |                                  |
| Detection of voltage swells and sags                              |                                |                                  |
| Flicker                                                           |                                |                                  |
| Fast acquistion                                                   | 1/2 cycle data                 |                                  |
| EN 50160 compliance checking                                      |                                | •                                |
| Customizable data outputs (using logic and math function          | s)                             | -                                |
| Data recording                                                    |                                |                                  |
| Min/max of instantaneous values                                   |                                | •                                |
| Data logs                                                         |                                | •                                |
| Event logs                                                        |                                | •                                |
| Trending/forecasting                                              |                                | •                                |
| SER (Sequence of event recording)                                 |                                | •                                |
| Time stamping                                                     |                                | •                                |
| GPS synchronization (+/- 1 ms)                                    |                                |                                  |
| Memory (in Mbytes)                                                |                                | 512<br>10 MB for Frameworks      |
| Display and I/O                                                   |                                |                                  |
| Front panel display 89 mm (3.5 in.) TFT                           |                                | =                                |
| Wiring self-test                                                  |                                |                                  |
| Pulse output                                                      |                                | 1                                |
| Digital<br>Analogue                                               |                                | 6 in / 2 out<br>4 in / 2 out     |
| Digital or analogue outputs (max, including pulse output)         |                                | 1 digital<br>8 relay<br>8 analog |
| Communication<br>RS 485 port                                      |                                |                                  |
| 10/100BaseTX                                                      |                                | 2                                |
| Serial port (Modbus, ION, DNP3)                                   |                                |                                  |
| Ethernet port (Modbus/TCP, ION TCP, DNP3 TCP, IEC 61              | 850 [2])                       |                                  |
| ANSI C12.19 Optical port                                          |                                |                                  |
| Standards                                                         |                                |                                  |
| IEC 61000-4-30, IEC 61000-4-7, IEC 61000-4-15, IEC 613<br>TR50579 | 326-1, ANSI C12.20, IEC 62052- | 11, IEC 62053-22, CLC/           |
|                                                                   |                                |                                  |

alarms

by Schneider Electric



## Address power issues before they cause problems

- Monitor harmonics to mitigate excessive heating and premature failure of transformers
- Use trending and alarming to detect fluctuations in current pull of critical equipment to prevent motor failure
- Utilize millisecond time stamping to analyze sequence of events
- Identify root cause by analyzing electrical faults with patented disturbance direction detection
- Identify power quality issues per EN 50160, including frequency inconsistency, voltage fluctuations and unbalance, and harmonic contribution
- Allocate costs for water, air, gas, electricity, and steam (WAGES) across departments, phases of industrial process, or cost centers
- Utilize time-of-use calendar to capture electrical consumption for specific times, including on/off peak and holidays

## Table 4.8: PM8000 Power and Energy Meter Catalog Numbers

| Description                                         | Catalog Number |
|-----------------------------------------------------|----------------|
| PM8000 Panel Mount Meter with<br>Integrated Display | METSEPM8240    |
| PM8000 DIN Rail Mount Meter without<br>Display      | METSEPM8243    |
| PM8000 DIN Rail Mount Meter + Remote<br>Display     | METSEPM8244    |
| Remote Display, Color LCD, 96 x 96                  | METSEPM89RD96  |
| I/O module, 2 relay outputs, 6 digital inputs       | METSEM89M2600  |
| I/O module, 2 analog outputs, 4 analog inputs       | METSEM89M0024  |
| Display Cable, 10 meters                            | METSECAB10     |
| Display Cable, 3 meters                             | METSECAB3      |
| Display Cable, 1 meters                             | METSECAB1      |
| Sealing kit                                         | METSEPM8000SK  |
| Mounting adapter kit (ANSI 4")                      | METSEPMAK      |
| Replacement hardware kit, PM8000 meter              | METSEPM8HWK    |
| Replacement hardware kit, PM8000                    | METSEPM8RDHWK  |

## New! PowerLogic PM8000 Power and Energy Meters

These compact meters help ensure the reliability and efficiency of your facility by making the management of power quality, availability, and reliability easy. Measure, understand, and act on insightful power and energy data gathered from your entire system.

## The best choice for power management

PM8000 meters combine accurate 3-phase energy and power measurements with data logging, power quality analysis, alarming and I/O capabilities not typically available in such compact meters. Four-metered current inputs allow direct measurement of 3-phase currents and neutral current for enhanced view of harmonics. Dual Ethernet ports support daisy-chaining, removing need for an Ethernet switch inside power equipment, while redundant ring topology provides enhanced availability. Modular, field installable I/ O provides expandable scalability. Patented ION technology combines convenient, preconfigured functionality with the ability to customize the meter configuration to meet unique requirements. This embedded capability can save the expense and complexity of additional equipment, both today and tomorrow. Plus, simple installation and networking make energy information quickly accessible, while integration with StruxureWare<sup>™</sup> software and your energy management system make it immediately actionable.

## Table 4.9: PM8000 Series Features

| Intermediate meter                        |                              |                      |
|-------------------------------------------|------------------------------|----------------------|
| General                                   |                              |                      |
| Use on LV and MV systems                  |                              |                      |
| Current accuracy (5A Nominal)             |                              | 0.1 % reading        |
| Voltage accuracy (57 V LN/100 V LL to 4   | 400 V LN/690 V LL)           | 0.1 % reading        |
| Active energy accuracy                    |                              | 0.2 %                |
| Number of samples/cycle or sample free    | quency                       | 256                  |
| Instantaneous rms values                  |                              |                      |
| Current, voltage, frequency               |                              |                      |
| Active, reactive, apparent power          | Total and per phase          |                      |
| Power factor                              | Total and per phase          | •                    |
| Current measurement range (autorangin     | ng)                          | 0.05–10 A            |
| Energy values                             |                              |                      |
| Active, reactive, apparent energy         |                              | •                    |
| Settable accumulation modes               |                              | •                    |
| Demand values                             | Drecent and max values       | _                    |
| Active reactive apparent power            | Present and max values       |                      |
| Predicted active reactive apparent power  |                              |                      |
| Synchronization of the measurement wi     | ndow                         |                      |
| Setting of calculation mode               | Block sliding                |                      |
| Power quality measurements                | DIOCK, Silding               |                      |
| Hormonia distortion                       | Current and voltage          | _                    |
| Harmonic distortion                       | Via front panel and web page |                      |
| Individual harmonics                      |                              | 03                   |
| Waveform capture                          |                              | 127                  |
| Detection of voltage swells and sags      |                              |                      |
| East acquisition                          | 1/2 cycle data               |                      |
| EN 50160 compliance checking              |                              |                      |
| Customizable data outputs (using logic a  | and math functions)          |                      |
| Data recording                            |                              | -                    |
| Min/max of instantaneous values           |                              | -                    |
| Data logs                                 |                              |                      |
| Event logs                                |                              |                      |
| Trending/forecasting                      |                              |                      |
| SER (Sequence of event recording)         |                              |                      |
| Time stamping                             |                              |                      |
| GPS synchronization (+/- 1 ms)            |                              | -                    |
| Memory (in Mbytes)                        |                              | 512                  |
| Display and I/O                           |                              |                      |
| Front panel display                       |                              |                      |
| Wiring self-test                          |                              |                      |
| Pulse output                              |                              | 1                    |
| Digital or analog inputs(max)             |                              | 27 digital 16 analog |
| Digital or analog inputs(max)             |                              | 1 digital 8 relay 8  |
| Digital of analog outputs (max, including | puise output)                | analog               |
| Communication                             |                              |                      |
| RS 485 port                               |                              | 1                    |
| Ethernet ports                            |                              | 2                    |
| Serial port (Modbus, ION, DNP3)           |                              |                      |
| Ethernet port (Modbus/TCP, ION TCP, E     | DNP3 TCP, IEC 61850)         |                      |
| Ethernet gateway                          |                              | •                    |
| Alarm notification via email              |                              | •                    |
| HTTP web server                           |                              |                      |
| SNMP with custom MIB and traps for ala    | arms                         |                      |
| SMTP email                                |                              |                      |
| ETD File transfer                         |                              | <b>_</b>             |
|                                           |                              |                      |



schneider-electric.us

## **Power Quality Meter Selection**

| Easturas (2)                                               | ION8650   |           | 10115050  |           | 011 (000T | 10117 (00 |           |           |
|------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| reatures [3]                                               | Α         | В         | С         | ION/650   | IUN/550   | CM40001   | ION/400   | PM8000    |
| Inputs, outputs and control power                          |           |           |           |           |           |           |           |           |
| 3-phase / single-phase                                     | •/•       | • / •     | • / •     | • / •     | • / •     | •/•       | •/•       | •/•       |
| Digital in and out / analog in and out                     | 16/4      | 16/4      | 16 / 4    | 20/8      | 20/8      | 24 / 4    | 36/24     | 36/24     |
| Power supply options                                       | AC/DC     |
| Power and energy measurements                              |           |           |           |           |           |           |           |           |
| Voltage, current, frequency, power factor                  | •         | •         | •         | •         | •         | •         | •         | •         |
| Power / Demand                                             | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       |
| Energy / time-of-use (energy per shift)                    | •/•       | • / •     | • / •     | • / •     | • / •     | • / •     | •/•       | •/•       |
| IEC / ANSI energy accuracy class (% of reading)            | 0.2(1)    | 0.2(1)    | 0.2(1)    | 0.2       | 0.2       | 0.2       | 0.2       | 0.2       |
| Loss compensation                                          | •         | •         | •         | •         | •         | -         | -         | -         |
| Power quality analysis                                     |           |           |           |           |           |           |           |           |
| EN50160 compliance reporting / IEC 61000-4-30 Class A or S | •/A       | •/S       | -/-       | • / A     | -/-       | • / -     | •/S       | •/S       |
| Flicker measurement                                        | •         | •         | -         | •         | -         | •         | -         | -         |
| Transient detection duration                               | 17 µs     | -         | -         | 17 µs     | -         | 200 ns    | -         | -         |
| Sag and swell monitoring / disturbance direction detection | •/-       | • / -     | •/-       | •/•       | •/•       | •/•       | •/•       | •/•       |
| Harmonic distortion: total/ individual / inter             | •/•/•     | •/•/-     | •/•/-     | •/•/•     | •/•/-     | •/•/-     | •/•/-     | •/•/-     |
| Waveform capture                                           | •         | -         | -         | •         | •         | •         | •         | •         |
| On-board data and event logging                            |           |           |           |           |           |           |           |           |
| Trending / forecasting / billing                           | •/-/•     | • / - / • | • / - / • | •/•/•     | •/•/•     | •/•/•     | •/•/•     | •/•/•     |
| Minimum and maximum                                        | •         | •         | •         | •         | •         | •         | •         | •         |
| Events and alarms with timestamps                          | •         | •         | •         | •         | •         | •         | •         | •         |
| Timestamp resolution (seconds)                             | 0.001     | 0.001     | 0.001     | 0.001     | 0.001     | 0.001     | 0.001     | 0.001     |
| Time sync: Network / GPS / IRIG-B / DCF77-B                | •/•/-     | •/•/-     | •/•/-     | •/•/-/-   | •/•/-/-   | •/•/-/•   | •/•/-/-   | •/•/•/-   |
| Setpoints, alarms and control                              |           |           |           |           |           |           |           |           |
| Log alarm conditions / call out on alarm                   | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       |
| Trigger data logging / waveform capture                    | •/•       | • / -     | •/-       | •/•       | •/•       | •/•       | •/•       | •/•       |
| Trigger relay or digital output                            | •         | •         | •         | •         | •         | •         | •         | •         |
| Special features                                           |           |           |           |           |           |           |           |           |
| Custom programming                                         | •         | •         | •         | •         | •         | •         | •         | •         |
| Downloadable firmware                                      | •         | •         | •         | •         | •         | •         | •         | •         |
| Communications                                             |           |           |           |           |           |           |           |           |
| Ports:                                                     |           |           |           |           |           |           |           |           |
| Ethernet: Copper / Fiber                                   | •/•       | •/•       | •/•       | •/•       | •/•       | • / •     | 2/-       | 2/-       |
| Ethernet-to-serial gateway                                 | •         | •         | •         | •         | •         | •         | 2/-       | •         |
| Telephone modem                                            | •         | •         | •         | •         | •         | -         | -         | -         |
| Modem-to-serial gateway                                    | •         | •         | •         | •         | •         | -         | -         | -         |
| Infrared port                                              | •         | •/•       | •/•       | •/•       | •/•       | -         | •         | -         |
| RS485/RS232                                                | •/•       | •/•       | •/•       | •/•       | •/•       | •/•       | • / -     | •/-       |
| Misc: Web server / Email / SNMP / XML                      | •/•/-/•   | •/•/-/•   | •/•/-/•   | •/•/•/•   | •/•/•/•   | •/•/-/•   | •/•/•/•   | •/•/•/•   |
| Protocols: Modbus / DNP / MV-90 / DLMS                     | •/•/•/-   | •/•/•/-   | •/•/•/-   | •/•/•/-   | •/•/•/-   | •/-/-/-   | •/•/•/-   | •/•/•/-   |
| Protocols: IEC61850 / Jbus / M-Bus / LON / BACnet          | •/-/-/-/- | •/-/-/-/- | •/-/-/-/- | •/-/-/-/- | •/-/-/-/- | -/-/-/-/- | •/-/-/-/- | •/-/-/-/- |

#### NOTE:

1. The ION8650 is two times more accurate than the 0.2 IEC/ANSI accuracy classes according to the same conditions used to specify the 0.2 accuracy class.

2. ION8800, ION8650, ION8600, ION7650, ION7550, PM8000 also offer Modbus Master capabilities.

4

[3] Specifications represent maximum capabilities with all options installed. Some options are not available concurrently. This is not a complete feature list, please refer to detailed product specifications.





PM5000 Series Power Meter



PowerLogic ION6200 Series

## New! Series 5000 Power Meters

The PowerLogic PM5000 series power meters are the new benchmark in affordable, precision metering. It is the ideal fit for high-end cost management applications, providing measurement capabilities needed to allocate energy usage, perform tenant metering and sub-billing, pin-point energy savings, optimize equipment efficiency and utilization, and perform a high level assessment of the power quality in electrical networks.

All meters provide Modbus serial communications. PM5500 level meters are also capable of simultaneous ModBus TCP and BTL-certified BACnet IP communications over Ethernet.

- Panel instrumentation (OEMs)
- Sub-billing and cost allocation
- Remote monitoring of an electrical installation
- Harmonic monitoring (THD)

## Table 4.10: Series 5000 Power Meters

| Description                                                             | Catalog No.      |
|-------------------------------------------------------------------------|------------------|
| Power Meter, Class 0.5 Serial Port                                      | METSEPM5110      |
| Meter, Class 0.5 Alarms TOU Serial Port                                 | METSEPM5330      |
| Power Meter, Class 0.5 Alarms TOU Ethernet Port                         | METSEPM5340      |
| Power Meter Class 0.2 Serial Port and Dual Ethernet                     | METSEPM5560      |
| Power Meter without Display Class 0.2 Serial Port and Dual Ethernet     | METSEPM5563      |
| Remote Display for METSEPM5563                                          | METSEPM5RD       |
| Power Meter with Remote Display Class 0.2 Serial Port and Dual Ethernet | METSEPM5563RD[4] |

## ION6200 Power and Energy Meter

The modular PowerLogic ION6200 is a low-cost, ultra-compact meter that offers outstanding versatility and functionality. It is simple to use, and has a big, bright LED display. It offers four-quadrant power, demand, energy, power factor and frequency measurements, and is available in a variety of flexible configurations. It is available as a low-cost base model to which enhanced functionality can be added over the long term. The PowerLogic ION6200 is ideal for customers who need revenue-accurate and/or certified measurements and want easy integration with power distribution assemblies and building automation systems. A Megawatt version is available for applications requiring readings in megawatts and kilovolts. It is well suited for sub-metering, energy cost tracking load profiling, and substation panel metering and is an ideal replacement for analog meters. It can be used for stand-alone metering in custom panels, switchboards, switchgear, gensets, motor control centers and UPS systems.

The meter consists of a base unit with options card and a power supply pack, with a remote display being optional.

#### PowerLogic ION6200 Power and Energy Meter Features

- Only two inches deep, and fits a standard ANSI four-inch switchboard cutout, or as a TRAN model with no display and can be fastened to a flat surface with a 4" (10cm) ANSI bolt pattern or mounted to a DIN rail. A remote display module (RMD) can be ordered for the TRAN and mounted through an ANSI 4" (10cm) and DIN 96 cutout.
- LED display with twelve 3/4" (19mm) high digits that display all basic power parameters
- Pulse Outputs: optional kWh, kVARh and/or kVAh pulsing
- Via two Form A outputs
- Communications: optional RS-485 port with Modbus RTU and ION compatible
- 64 samples per cycle true RMS
- · 3-phase voltage and current inputs

The standard ION6200 is available with the following: Voltage L-N average and per phase, Voltage L-L average and per phase, Current average and per phase.

**Option EP#1, includes the standard measurements and provides the following additional parameters:**I4, kW/mW total, kW/mWh total, kW/mW peak, Current demand average and per phase, Current peak demand average and per phase, Power factor total.

Optional Enhanced Package, includes the standard measurements and provides the following additional parameters: kW/mW per phase, kVAR/mVAR total and per phase, kVA/mVA total and per phase, kVA/mVA total and del/rec per phase, kVA/mVAR total and del/rec per phase, kVA/mVAR total and per phase.

#### Table 4.11: Typical PowerLogic ION6200 Ordering Configurations

| Description                                                                                                                                    | Catalog No.      |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Integrated display, 10 A inputs, standard 100–240 Vac power supply, RS485 port (Modbus RTU), 2 pulse outputs, Enhanced Package #2              | S6200A0A0B0A0B0R |
| TRAN Model, with remote display, 10 A inputs, standard 100–240 Vac power supply, RS485 port (Modbus RTU), 2 pulse outputs, Enhanced Package #2 | S6200R1A0B0A0B0R |
| TRAN Model, (no display), 10 A inputs, standard 100–240 Vac power supply, RS485 port (Modbus RTU), 2 pulse outputs, Enhanced Package #2        | S6200T1A0B0A0B0R |
|                                                                                                                                                |                  |

**NOTE:** Please refer to www.schneider-electric.us for the most complete and up-todate list of feature availability. Some features are optional.

## Power and Energy Meters — EM3500

Series





EM3500 Series Energy and Power Meter

## Series 3500 Energy and Power Meter

The EM3500 series Energy and Power Meter combines exceptional performance and easy installation to deliver a cost-effective solution for power monitoring applications. The EM3500 series can be installed on standard DIN rail or surface mounted, and has bi-directional monitoring designed expressly for renewable energy applications.

- Pulse output and phase alarms
- Data logging capability in some models
- · Modbus and BACnet output options

### Table 4.12: Series 3500 Energy and Power Meters

| Description                                                                    | Catalog Number |
|--------------------------------------------------------------------------------|----------------|
| Power Meter, DIN-rail, Pulse Output Only, for LVCTs                            | METSEEM3502    |
| Power Meter, DIN-rail Pulse Output Only, for U018 Rope CTs                     | METSEEM3502A   |
| Power Meter, DIN-rail Modbus Output for LVCTs                                  | METSEEM3550    |
| Power Meter, DIN-rail, Modbus Output, for U018 Rope CTs                        | METSEEM3550A   |
| Power Meter, DIN-rail Modbus Output, Bi-Directional, Logging for LVCTs         | METSEEM3555    |
| Power Meter, DIN-rail Modbus Output, Bi-Directional, Logging for U018 rope CTs | METSEEM3555A   |
| Power Meter, DIN-rail, BACnet Output, Logging for LVCTs                        | METSEEM3560    |
| Power Meter, DIN-rail, BACnet Output, Logging for U018 Rope CTs                | METSEEM3560A   |
| Power Meter, DIN-rail, BACnet Output, for LVCTs                                | METSEEM3561    |
| Power Meter, DIN-rail, BACnet Output, for U018 Rope CTs                        | METSEEM3561A   |

### **U018 Series Rope-Style Current Transformers**

The U018 series works exclusively with the EM3500A series power and energy meters. These meters have a built in power supply and integrator, so CT connecton is fast and simple. The coil opens at the connector juncton for fast and easy installaton onto an existing cable or buss-bar. The flexible core makes it easy to fit in tght enclosure

• Agency Approvals cURus, ANSI/IEEE 57.13, CE, RoHS

- Accuracy ±1% from 50 A to 5000 A
- Insulation up to 600 Vac

| Description                                                                         | Catalog Number |
|-------------------------------------------------------------------------------------|----------------|
| 12 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 8 ft. leads  | U018-0001      |
| 18 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 8 ft. leads  | U018-0002      |
| 24 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 8 ft. leads  | U018-0003      |
| 36 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 8 ft. leads  | U018-0004      |
| 12 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A–5000 A, 1%, 12 ft. leads | U018-0005      |
| 18 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 12 ft. leads | U018-0006      |
| 24 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 12 ft. leads | U018-0007      |
| 36 inch Rope CT for use with EM3500A DIN-Rail Meters, 50 A-5000 A, 1%, 12 ft. leads | U018-0008      |

#### LVCT Series Current Transformers

LVCT current transducers provide a 0.333 V output for use with EM3500 series meters. Available in both solid and split core styles.

- Solid core accuracy ±0.5 of reading from 5% to 120% of rated current
- Split core accuracy 1% from 10% to 100% of rated current
- Leads 22 AWG, 600 Vac, UL 1015 bonded pair, 6 ft. (1.8 m) standard length

| Description                                       | Catalog Number |
|---------------------------------------------------|----------------|
| Split core                                        |                |
| Low-Voltage CT, Split Core, Size 0, 50 A:0.33 V   | LVCT00050S     |
| Low-Voltage CT, Split Core, Size 1, 100 A:0.33 V  | LVCT00101S     |
| Low-Voltage CT, Split Core, Size 2, 100 A:0.33 V  | LVCT00102S     |
| Low-Voltage CT, Split Core, Size 1, 200 A:0.33 V  | LVCT00201S     |
| Low-Voltage CT, Split Core, Size 2, 200 A:0.33 V  | LVCT00202S     |
| Low-Voltage CT, Split Core, Size 2, 300 A:0.33 V  | LVCT00302S     |
| Low-Voltage CT, Split Core, Size 3, 400 A:0.33 V  | LVCT00403S     |
| Low-Voltage CT, Split Core, Size 3, 600 A:0.33 V  | LVCT00603S     |
| Low-Voltage CT, Split Core, Size 3, 800 A:0.33 V  | LVCT00803S     |
| Low-Voltage CT, Split Core, Size 4, 800 A:0.33 V  | LVCT00804S     |
| Low-Voltage CT, Split Core, Size 4, 1000 A:0.33 V | LVCT01004S     |
| Low-Voltage CT, Split Core, Size 4, 1200 A:0.33 V | LVCT01204S     |
| Low-Voltage CT, Split Core, Size 4, 1600 A:0.33 V | LVCT01604S     |
| Low-Voltage CT, Split Core, Size 4, 2000 A:0.33 V | LVCT02004S     |
| Low-Voltage CT, Split Core, Size 4, 2400 A:0.33 V | LVCT02404S     |
| Solid core                                        |                |
| Low-Voltage CT, Solid Core, Size 0, 50 A:0.33 V   | LVCT20050S     |
| Low-Voltage CT, Solid Core, Size 0, 100 A:0.33 V  | LVCT20100S     |
| Low-Voltage CT, Solid Core, Size 2, 200 A:0.33 V  | LVCT20202S     |
| Low-Voltage CT Solid Core, Size 3, 400 A:0 33 V   | LVCT20403S     |





PM3000 Series Power Meter

## New! PowerLogic PM3000 Power and Energy Meters

PM3000 series power meters are a cost-attractive, feature-rich range of DIN railmounted power meters that offers all the measurement capabilities required to monitor an electrical installation. Ideal for power metering and network monitoring applications that seek to improve the availability and reliability of your electrical distribution system, the meters are also fully capable of supporting sub billing and cost allocation applications. Four different models are available. Choose from models that provide Display Only, Display + Pulse Output, Display + Modbus, and Display + Modbus + DI/DO + Logging. All models use 1A/5A CTs.

## Table 4.13: PM3000 Features

| Ausilable Fastures                                          | PM3200 Range |        |        |        |  |  |  |
|-------------------------------------------------------------|--------------|--------|--------|--------|--|--|--|
|                                                             | PM3200       | PM3210 | PM3250 | PM3255 |  |  |  |
| Performance Standard                                        | -            |        |        |        |  |  |  |
| IEC61557-12 PMD/Sx/K55/0.5                                  | •            | •      | •      | •      |  |  |  |
| General                                                     |              | 1      | 1      |        |  |  |  |
| Use on LV and HV systems                                    | •            | •      | •      | •      |  |  |  |
| Number of samples per cycle                                 | 32           | 32     | 32     | 32     |  |  |  |
| CT input 1A/5A                                              | •            | •      | •      | •      |  |  |  |
| VT input                                                    | •            | •      | •      | •      |  |  |  |
| Multi-tariff                                                | 4            | 4      | 4      | 4      |  |  |  |
| Multi-lingual backlit display                               | •            | •      | •      | •      |  |  |  |
| Instantaneous rms Values                                    |              |        |        |        |  |  |  |
| Current, voltage Per phase and average                      | •            | •      | •      | •      |  |  |  |
| Active, reactive, apparent power Total and per phase        | •            | •      | •      | •      |  |  |  |
| Power factor Total and per phase                            | •            | •      | •      | •      |  |  |  |
| Energy Values                                               |              |        |        |        |  |  |  |
| Active, reactive and apparent energy; import and export     | •            | •      | •      | •      |  |  |  |
| Demand Values                                               |              |        |        |        |  |  |  |
| Current, power (active, reactive, apparent) demand; present | •            | •      | •      | •      |  |  |  |
| Current, power (active, reactive, apparent) demand; peak    |              | •      | •      | •      |  |  |  |
| Power Quality Measurements                                  |              |        |        |        |  |  |  |
| THD Current and voltage                                     |              | •      | •      | •      |  |  |  |
| Data Recording                                              |              |        |        |        |  |  |  |
| Min/max of the instantaneous values                         | •            | •      | •      | •      |  |  |  |
| Power demand logs                                           |              |        |        | •      |  |  |  |
| Energy consumption log (day, week, month)                   |              |        |        | •      |  |  |  |
| Alarms with time stamping                                   |              | 5      | 5      | 15     |  |  |  |
| Digital inputs/digital outputs                              |              | 0/1    |        | 2/2    |  |  |  |
| Communication                                               |              |        |        |        |  |  |  |
| RS-485 port                                                 |              |        | •      | •      |  |  |  |
| Modbus protocol                                             |              |        | •      | •      |  |  |  |

## Table 4.14: PM3000 Series Power Meters

| Description                                                                                                          | Catalog Number |
|----------------------------------------------------------------------------------------------------------------------|----------------|
| PM3200 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, no<br>communications, MID compliant                | METSEPM3200    |
| PM3210 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, pulse out, MID compliant, THD, one (1) DO          | METSEPM3210    |
| PM3250 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, Modbus, THD                                        | METSEPM3250    |
| PM3255 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, Modbus, MID compliant, THD, two (2) DI, two (2) DO | METSEPM3255    |

POWER MONITORING AND CONTROL

## Power and Energy Meters — iEM3000





iEM3000 Series Energy Meter

## NOTE:

- For meter part number replace "i" in model name with "A9M". (Example: iEM3150 = A9MEM3150)
- DIN rail housing size is 18mm x 5 width. (iEM33xx is 18mm x 7 width.)
- Digital input is selectable for Tariff control or WAGES
- Digital output is selectable for kWh pulse or kW alarm. (iEM3x10 is kWh pulse only.)

#### **Measurement parameters**

- Total and partial kWh shows consumption behavior
- Four-quadrant metering differentiates energy consumption
- Target green technologies (delivered/received)
- Reduce utility penalties (active/reactive)
- Additional parameters (P, Q, S, 3xI, V, PF, F) to monitor network balance and overload behavior

## Smart Alarm

 kW overload alarm helps prevent utility demand charges

## New!) iEM3000 Energy Meters

The economical iEM3000 energy meters are ideal for helping facilities become more energy efficient. These feature-rich meters reduce installation and commissioning costs thanks to their efficient design and include native support for a variety of protocols, including Modbus, BACnet, LON, and M-Bus, for seamless integration into networks. Choose from models supporting a variety of current-sensing methods, including standard 1A/5A current transformers, 0.333 V low-voltage CTs, and U018 Rogowski coils. There are also direct connect models with internal current sensors that save installation time. The compact size is ideal for new and retrofit installations. Whether metering for energy awareness, billing, or advanced energy programs requiring full-featured, multi-tariff energy meters, there is an iEM3000 meter that fits the application.

## Table 4.15: iEM3000 Features

| Function                            | Acti 9 iEM | 3000 Series | Three-Pha | se Meters |         |         |         |
|-------------------------------------|------------|-------------|-----------|-----------|---------|---------|---------|
| Current Input / Accuracy            |            |             |           |           |         |         |         |
| 63A Direct / Class 1                | iEM3100    | iEM3110     | iEM3135   | iEM3150   | iEM3155 | iEM3165 | iEM3175 |
| 1A or 5A CT / Class 0.5S            | iEM3200    | iEM3210     | iEM3235   | iEM3250   | iEM3255 | iEM3265 | iEM3275 |
| 125A Direct / Class 1               | iEM3300    | iEM3310     | iEM3335   | iEM3350   | iEM3355 | iEM3365 | iEM3375 |
| 0.333V or 1.0V LVCT / Class<br>0.5S |            |             |           |           | iEM3455 | iEM3465 |         |
| Rogowski coil / Class 0.5S          |            |             |           |           | iEM3555 | iEM3565 |         |
| Protocol                            |            |             |           |           |         |         |         |
| M-Bus                               |            |             | •         |           |         |         |         |
| Modbus                              |            |             |           | •         | •       |         |         |
| BACnet                              |            |             |           |           |         | •       |         |
| LonWorks                            |            |             |           |           |         |         | •       |
| Measurement                         |            |             |           |           |         |         |         |
| MID compliant                       |            | •           | •         |           | •       | •       | •       |
| 4 quadrant energy                   |            |             | •         |           | •       | •       | •       |
| Multi Tariff                        | -          |             |           |           |         |         |         |
| Internal clock                      |            |             | 4         |           | 4       | 4       | 4       |
| External control                    |            |             | 2         |           | 4       | 4       | 4       |
| Digital I/O                         | •          |             |           | •         |         | •       |         |
| Number of inputs/outputs            |            | -/1         | 1/1       |           | 1/1     | 1/1     | 1/1     |

#### **Multiple Tariffs**

- Save up to four different time slots to manage multiple tariffs (peak/off-peak, workday/weekend)
- Control tariffs via digital inputs, internal clock, or communication
   Digital Inputs
- Use the meter as a pulse counter for another meter (WAGES monitoring)
- Manage double-source applications (e.g., utility main plus on-site generator)
- Monitor circuit breaker status or cabinet door opening

## **Digital Outputs**

- Use to trip a light or sound an alarm
- · Configure as a pulse output

#### Table 4.16: iEM3000 Series Energy Meters

| Description                                                                                                                    | Catalog Number |
|--------------------------------------------------------------------------------------------------------------------------------|----------------|
| iEM3100 3PH energy meter, DIN rail mount, direct connect 63A, Class 1                                                          | A9MEM3100      |
| iEM3110 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, pulse out, MID, one (1) DO                              | A9MEM3110      |
| iEM3135 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, M-Bus, MID, 4-quadrant energy, one (1) DI, one (1) DO   | A9MEM3135      |
| iEM3150 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, Modbus                                                  | A9MEM3150      |
| iEM3155 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, Modbus, MID, 4-quadrant energy, one (1) DI, one (1) DO  | A9MEM3155      |
| iEM3165 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, BACnet, MID, 4-quadrant energy, one (1) DI, one (1) DO  | A9MEM3165      |
| iEM3175 3PH energy meter, DIN rail mount, direct connect 63A, Class 1, LON, MID, 4-quadrant energy, one (1) DI, one (1) DO     | A9MEM3175      |
| iEM3200 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S                                                              | A9MEM3200      |
| iEM3210 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, pulse out, MID one (1) DO                                   | A9MEM3210      |
| iEM3235 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, M-Bus, MID, 4-quadrant energy, one (1) DI, one (1) DO       | A9MEM3235      |
| iEM3250 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, Modbus                                                      | A9MEM3250      |
| iEM3255 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, Modbus, MID, 4-quadrant energy, one (1) DI, one (1) DO      | A9MEM3255      |
| iEM3265 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, BACnet, MID, 4-quadrant energy, one (1) DI, one (1) DO      | A9MEM3265      |
| iEM3275 3PH energy meter, DIN rail mount, 1A or 5A CT, Class 0.5S, LON, MID, 4-quadrant energy, one (1) DI, one (1) DO         | A9MEM3275      |
| iEM3300 3PH energy meter, DIN rail mount, direct connect 125A, Class 1                                                         | A9MEM3300      |
| iEM3310 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, pulse out, MID, one (1) DO                             | A9MEM3310      |
| iEM3335 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, M-Bus, MID, 4-quadrant energy, one (1) DI, one (1) DO  | A9MEM3335      |
| iEM3350 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, Modbus                                                 | A9MEM3350      |
| iEM3355 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, Modbus, MID, 4-quadrant energy, one (1) DI, one (1) DO | A9MEM3355      |
| iEM3365 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, BACnet, MID, 4-quadrant energy, one (1) DI, one (1) DO | A9MEM3365      |
| iEM3375 3PH energy meter, DIN rail mount, direct connect 125A, Class 1, LON, MID, 4-quadrant energy, one (1) DI, one (1) DO    | A9MEM3375      |
| iEM3455 3PH energy meter, DIN rail mount, LVCT, Class 0.5S, Modbus, MID, 4-quadrant energy, one (1) DI, one (1) DO             | A9MEM3455      |
| iEM3465 3PH energy meter, DIN rail mount, LVCT, Class 0.5S, BACnet, MID, 4-quadrant energy, one (1) DI, one (1) DO             | A9MEM3465      |
| iEM3555 3PH energy meter, DIN rail mount, Rogowski coil, Class 0.5S, Modbus, MID, 4-quadrant energy, one (1) DI, one (1) DO    | A9MEM3555      |
| iEM3565 3PH energy meter, DIN rail mount, Rogowski coil, Class 0.5S, BACnet, MID, 4-quadrant energy, one (1) DI, one (1) DO    | A9MEM3565      |

© 2017 Schneider Electric All Rights Reserved

6/20/2017



## Multiple Meter Unit Enclosures for iEM3000 Energy Meters



Schneider Electric's Multi-Meter Unit (MMU) enclosures are the ideal complement for the iEM3000 Series of energy meters. This compact solution saves wall space and is scalable for the exact number of meters required. Factory-assembled, pre-wired, and tested enclosures can speed installation, reduce the amount of field wiring, and save time troubleshooting.

Multi-meter unit enclosures and iEM3000 meters provide the highest quality, best value hardware for tenant sub-metering, and are designed for contractor convenience and simplicity.

MMU enclosures are available in three sizes:

- Small MMU enclosures with capacity for up to 4 iEM3000 meters.
- Medium size MMU enclosures with capacity for up to 8 iEM3000 meters, plus one gateway/data logger/energy server.
- Extra-large MMU enclosures with capacity for up to 24 iEM3000 meters, plus one gateway/ data logger/energy server.

| Series                                                 | MMU 1 08 08 A D 1                    | System Type                                                             |
|--------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|
| MMU = Multi-meter unit                                 |                                      | 1 = Prewired for single-phase<br>208Y/120V L-L-N metering               |
| NEMA Rating                                            |                                      | 2 = Prewired for single-phase<br>120V or 277V L-N metering              |
| 1 = NEMA Type 1                                        |                                      | 2 = Prewired for single-phase<br>120/240V L-L-N metering                |
| Enclosure Capacity<br>04 = 4 meters, 16"H x 12"W x 6"D |                                      | 2 = Prewired for three-phase 208Y/120V<br>or 480Y/277V L-L-L-N metering |
| 08 = 8 meters, 20"H x 20"W x 6"D                       |                                      | Gateway/Data Logger/Energy Server                                       |
| 24 = 24 meters, 30"H x 24"W x 6"D                      |                                      | N = None (Required if Meter Type<br>is B or D, or Meter Capacity = 04)  |
| Number of Meters Installed                             |                                      | L = EGX150 gateway                                                      |
| 01 = 1 meter                                           | Meter Type (Sensor, Serial Protocol) | D = EBX210 data logger                                                  |
| xx = up to capacity limit                              | x = up to capacity limit             |                                                                         |
|                                                        | A = IEM3455 (LVC I, Modbus)          | X = EGX300 energy server                                                |
|                                                        | B = iEM3465 (LVCT, BACnet)           | B = EGX300 energy server                                                |
|                                                        | C = iEM3555 (Rogowski, Modbus)       |                                                                         |
|                                                        | D = iEM3565 (Rogowski, BACnet)       | 64 application                                                          |

Multi meter units are configured to order as described below.



schneider-electric.us

## **Power and Energy Meter Selection**

| Features [5]                                               | PM5110    | PM5330    | PM5340    | PM5500  | ION6200   | EM3500   | PM3000    | iEM3000                                 |
|------------------------------------------------------------|-----------|-----------|-----------|---------|-----------|----------|-----------|-----------------------------------------|
| Inputs, outputs and control power                          |           |           |           |         |           |          |           |                                         |
| 3-phase / single-phase                                     | •/•       | •/•       | •/•       | •/•     | •/•       | •/•      | •/•       | •/•                                     |
| Digital in and out / analog in and out                     | 1/0       | 4/0       | 4/0       | 6/0     | 2/-       | 2 or 3/0 | up to 2/2 | up to 1/1                               |
| Power supply options                                       | AC/DC     | AC/DC     | AC/DC     | AC/DC   |           | AC/DC    | AC/DC     | AC                                      |
| Power and energy measurements                              | 110/20    | 710/20    | 110/210   | 110/20  | 1.0.00    | 110/20   | 110/20    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Voltage current frequency power factor                     |           | l .       | •         | •       | l .       | •        |           | •                                       |
| Power / Demand                                             | •/•       | •/•       | •/•       | •/•     | •/•       | •/•      | •/•       | •/-                                     |
| Energy / time-of-use (energy per shift)                    | •/-       | •/•       | •/•       | •/•     | •/-       | -/-      | •/•       | •/•                                     |
| IEC / ANSI energy accuracy class (% of reading)            | 0.5       | 0.5       | 0.5       | 0.2     | 0.5       | 0.2      | 0.5       | 0.5                                     |
| Loss compensation                                          | -         | -         | -         | -       | -         | -        | -         | -                                       |
| Power quality analysis                                     | 1         | 1         | 11        |         | 1         | I        | 1         |                                         |
| EN50160 compliance reporting / IEC 61000-4-30 Class A or S | - / -     | - / -     | - / -     | - / -   | -/-       | -/-      | - / -     | - / -                                   |
|                                                            | - / -     | -7-       | -7-       | -1-     | -7-       | -1-      | - / -     | -1-                                     |
| Transient detection duration                               | -         | -         | -         | -       | -         | -        | -         | -                                       |
| Sag and swell monitoring / disturbance direction detection | -/-       | -/-       | -/-       | -/-     | -/-       | -/-      | -/-       | -/-                                     |
| Harmonic distortion: total/ individual / inter             | •/•/-     | •/•/-     | •/•/-     | •/•/-   | •/-/-     | -/-/-    | •/-/-     | -/-/-                                   |
| Waveform capture                                           | -         | -         | -         | -       | -         | -        | -         | -                                       |
| On-board data and event logging                            |           |           |           |         |           |          |           | -                                       |
| Trending / forecasting / billing                           | -/-/-     | -/-/-     | -/-/-     | -/-/-   | -/-/-     | -/-/-    | -/-/-     | -/-/-                                   |
| Minimum and maximum                                        | •         | •         | •         | •       | -         | -        | •         | -                                       |
| Events and alarms with timestamps                          | -         | •         | •         | •       | -         | -        | •         | -                                       |
| Timestamp resolution (seconds)                             | 1         | 1         | 1         | 1       | -         | 1        | 1         | -                                       |
| Time sync: Network / GPS / IRIG-B / DCF77-B                | -/-/-/-   | -/-/-/-   | -/-/-/-   | -/-/-/- | -/-/-/-   | -/-/-/-  | -/-/-/-   | -/-/-/-                                 |
| Setpoints, alarms and control                              |           |           |           |         | •         |          |           |                                         |
| Log alarm conditions / call out on alarm                   | -/-       | •/•       | •/•       | •/•     | -/-       | -/-      | •/-       |                                         |
| Trigger data logging / waveform capture                    | -/-       | -/-       | -/-       | -/-     | -/-       | -/-      | -/-       | -/-                                     |
| Trigger relay or digital output                            | -         | •         | •         | •       | -         | -        | •         | •                                       |
| Special features                                           |           | 1         |           |         |           |          | 1         |                                         |
| Custom programming                                         | -         | -         | -         | -       | -         | -        | -         |                                         |
| Downloadable firmware                                      | •         | •         | •         | •       | -         | -        | -         | -                                       |
| Communications                                             |           |           |           |         | •         |          |           |                                         |
| Ports:                                                     |           |           |           |         |           |          |           |                                         |
| Ethernet: Copper / Fiber                                   | - / -     | -/-       | 1/-       | 2/ -    | - / -     | - / -    | - / -     | - / -                                   |
| Ethernet-to-serial gateway                                 | -         | -         | -         | •       | -         | -        | -         | -                                       |
| Telephone modem                                            | -         | -         | -         | -       | -         | -        | -         | -                                       |
| Modem-to-serial gateway                                    | -         | -         | -         | -       | -         | -        | -         | -                                       |
| Infrared port                                              | -         | -         | -         | -       | -         | -        | -         | -                                       |
| RS485/RS232                                                | • / -     | •/-       | -/-       | • / -   | •/-       | •/-      | •/-       | •/-                                     |
| Misc: Web server / Email / SNMP / XML                      | -/-/-/-   | -/-/-/-   | -/-/-/-   | •/-/-/- | -/-/-/-   | -/-/-/-  | -/-/-/-   | -/-/-/-                                 |
| Protocols: Modbus / DNP / MV-90 / DLMS                     | •/-/-/-   | •/-/-/-   | •/-/-/-   | •/-/-/- | •/-/-/-   | •/-/-/-  | •/-/-/-   | •/-/-/-                                 |
| Protocols: IEC61850 / Jbus / M-Bus / LON / BACnet          | -/-/-/-/- | -/-/-/-/- | -/-/-/-/- | -/-/-/• | -/-/-/-/- | -/-/-/•  | -/-/-/-/- | -/-/•/•/•                               |

4

[5] Specifications represent maximum capabilities with all options installed. Some options are not available concurrently. This is not a complete feature list, please refer to detailed product specifications.

PowerLogic Energy Meter

by Schneider Electric



Energy Meter

#### Table 4.17: Basic 120/240 V to 208Y/120 V

| Description                          | Catalog No. |
|--------------------------------------|-------------|
| Basic 100 A, .518"x1.28" ID, 1 CT    | EMB1010     |
| Basic 200 A, 0.75" x 1.10" ID, 1 CT  | EMB1021     |
| Basic 300 A, .90"x1.90" ID, 1 CT     | EMB1032     |
| Basic 100 A, .518"x1.28" ID, 2 CTs   | EMB2010     |
| Basic 200 A, 0.75" x 1.10" ID, 2 CTs | EMB2021     |
| Basic 300 A, .90"x1.90" ID, 2 CTs    | EMB2032     |
| Basic 400 A, 2.45"x2.89" ID, 2 CTs   | EMB2043     |
| Basic 800 A, 2.45"x2.89" ID, 2 CTs   | EMB2083     |
| Basic 100 A, .518"x1.28" ID, 3 CTs   | EMB3010     |
| Basic 200 A, 0.75" x 1.10" ID, 3 CTs | EMB3021     |
| Basic 300 A, .90"x1.90" ID, 3 CTs    | EMB3032     |
| Basic 400 A, 2.45"x2.89" ID, 3 CTs   | EMB3043     |
| Basic 800 A, 2.45"x2.89" ID, 3 CTs   | EMB3083     |
| Basic 800 A, 2.45"x5.50" ID, 3 CTs   | EMB3084     |
| Basic 1600 A, 2.45"x5.50" ID, 3 CTs  | EMB3164     |

#### Table 4.19: Energy Meter Accessories

| Description                          | Catalog No. |
|--------------------------------------|-------------|
| Energy Meter Communication Board [6] | EMCB        |
| Energy Meter Fuse Pack, Set of 1     | EMFP1       |
| Energy Meter Fuse Pack, Set of 2     | EMFP2       |
| Energy Meter Fuse Pack, Set of 3     | EMFP3       |
| Energy Meter Bonding Kit             | EMBOND      |



EM4200 Series Enercept

## PowerLogic Energy Meter

The Energy Meter is ideal for stand-alone and systems-based submetering applications. It is easy to install and provides exceptional metering accuracy. Available in Basic and Extended Range models. The Basic model is designed for metering of 120/240 and 208Y/120 volt services. The Extended Range model will meter 120/240 volt up to 480 volt Wye connected services. Extended Range meters come with pulse output and phase loss output not available on the Basic unit. Optional Modbus™ RS-485 serial communications are provided with the Energy Meter Comms Board, EMCB. Optional kW demand is also provided by the EMCB.

Meter up to 3 individual services with one Energy Meter. The Energy Meter will allow the addition of up to 3 sets of parallel CTs for metering multiple electric loads. Additional sets of CTs can be ordered separately. Please refer to the multiple CT application notes in the Energy Meter instruction bulletin for the proper installation procedures.

#### Table 4.18: Extended Range 120/240 V to 480Y/277 V

| Description                                   | Catalog No. |
|-----------------------------------------------|-------------|
| Extended Range 100 A, .518"x1.28" ID, 1 CT    | EME1010     |
| Extended Range 200 A, 0.75" x 1.10" ID, 1 CT  | EME1021     |
| Extended Range 300 A, .90"x1.90" ID, 1 CT     | EME1032     |
| Extended Range 100 A, n.518"x1.28" ID, 2 CTs  | EME2010     |
| Extended Range 200 A, 0.75" x 1.10" ID, 2 CTs | EME2021     |
| Extended Range 300 A, .90"x1.90" ID, 2 CTs    | EME2032     |
| Extended Range 400 A, 2.45"x2.89" ID, 2 CTs   | EME2043     |
| Extended Range 800 A, 2.45"x2.89" ID, 2 CTs   | EME2083     |
| Extended Range 100 A, .518"x1.28" ID, 3 CTs   | EME3010     |
| Extended Range 200 A, 0.75" x 1.10" ID, 3 CTs | EME3021     |
| Extended Range 300 A, .90"x1.90" ID, 3 CTs    | EME3032     |
| Extended Range 400 A, 2.45"x2.89" ID, 3 CTs   | EME3043     |
| Extended Range 800 A, 2.45"x2.89" ID, 3 CTs   | EME3083     |
| Extended Range 800 A, 2.45"x5.50" ID, 3 CTs   | EME3084     |
| Extended Range 1600 A, 2.45"x5.50" ID, 3 CTs  | EME3164     |

#### Table 4.20: Additional CT Sets

| Description                    | Catalog No. |
|--------------------------------|-------------|
| 100 A, .518" x 1.28" ID, 1 CT  | EMCT010     |
| 200 A, 0.75" x 1.10" ID, 1 CT  | EMCT021     |
| 300 A, .90" x 1.90" ID, 1 CT   | EMCT032     |
| 400 A, 2.45" x 2.89" ID, 1 CT  | EMCT043     |
| 800 A, 2.45" x 2.89" ID, 1 CT  | EMCT083     |
| 800 A, 2.45" x 5.50" ID, 1 CT  | EMCT084     |
| 1600 A, 2.45" x 5.50" ID, 1 CT | EMCT164     |

**NOTE:** CT quantity and amperage must match meter model. Total of combined loads must not exceed rating of meter. All additional CTs shipped with 6 ft. white and black color-coded wire leads.

## New!) PowerLogic EM4200 Enercept Meter

Next generation Enercept meters provide a unique solution for measuring energy data. The small form factor enables retrofit installation in existing panels to save wall space, installation time, and material cost. They are compatible with O.333V LVCT split-core, solid-core and U018 rope-style current transducers 50–5000A and communicate using Modbus and BACnet protocols.

#### Features

- High reliability with ANSI C12.20 0.2% accuracy, IEC 62053-22 Class 0.2S, 90 to 480 Vac
- · Compact size for easy in-panel mounting, DIN rail or screw mount options
- Easy integration with a variety of CT form factors split-core, solid-core, and Rope-Style Rogowski (U018), and compatibility from 5 to 5000A
  - Seamless integration with StruxureWare Power Monitoring Expert (PME), StruxureWare Building Operation (SBO), and StruxureWare Building Expert (SBE)
- Configurable with or without power
- Quick connection with auto protocol, baud rate, and uni-directional/bi-directional
   detection
- Native Modbus and BACnet protocols along with uni-directional and bi-directional feature sets in one unit

#### Table 4.21: EM4200 Enercept Meter

| - |                                                                                                                                        |                |
|---|----------------------------------------------------------------------------------------------------------------------------------------|----------------|
|   | Description                                                                                                                            | Catalog Number |
|   | Enercept Power Meter, Class 0.2S, Modbus/BACnet<br>RS485, ANSI wire code, compatible with LVCT and<br>Rogowski coils, order separately | EM4236         |

[6] Energy Meter communication board (EMCB) can be used with all models of the Energy Meter. Order one EMCB for each Energy Meter where either kW demand and/or communication is specified.

## PowerLogic Enercept<sup>™</sup> Meter

The Enercept Meter is the ideal solution for submetering electric loads where space is at





Enercept Meter

a premium. The compact design consists of three interconnected split-core CTs with the metering and communication electronics built into the CT housing. Simply snap on the CTs, connect the voltage inputs, the communication lines, and installation is complete. Both versions can be connected to either three-phase or single-phase circuits. Enercept meters employ the Modbus™ RTU 2-wire communication protocol, and can utilize the same communication network and Power Management Software applications as other PowerLogic devices. Data from the Enercept meters can be presented in tabular or graphical format, used for alarming and historical logging and trending, and to

# Optional Submeter display (SMD) acts as a stand-alone operator interface supporting up to 32 meters (63 with a repeater). In addition, the Submeter display (SMD) can act as a network adapter allowing Enercept meters to be incorporated into a network.

#### Table 4.22: Enercept Meter

produce reports.

PowerLogic Enercept<sup>™</sup> Meter

| Description                       | Catalog No.  |
|-----------------------------------|--------------|
| Basic 100 A, 1.25" x 1.51" ID     | 3020B012[7]  |
| Basic 300 A, 1.25" x 1.51" ID     | 3020B032 [7] |
| Basic 400 A, 2.45" x 2.89" ID     | 3020B043 [7] |
| Basic 800 A, 2.45" x 2.89" ID     | 3020B083 [7] |
| Basic 800 A, 2.45" x 5.50" ID     | 3020B084 [7] |
| Basic 1600 A, 2.45" x 5.50" ID    | 3020B164 [7] |
| Basic 2400 A, 2.45" x 5.50" ID    | 3020B244 [7] |
| Enhanced 100 A, 1.25" x 1.51" ID  | 3020E012     |
| Enhanced 300 A, 1.25" x 1.51" ID  | 3020E032     |
| Enhanced 400 A, 2.45" x 2.89" ID  | 3020E043     |
| Enhanced 800 A, 2.45" x 2.89" ID  | 3020E083     |
| Enhanced 800 A, 2.45" x 5.50" ID  | 3020E084     |
| Enhanced 1600 A, 2.45" x 5.50" ID | 3020E164     |
| Enhanced 2400 A. 2.45" x 5.50" ID | 3020E244     |

#### Table 4.23: Accessories

| Description                               | Catalog No. |
|-------------------------------------------|-------------|
| Submeter display mounted in enclosure     | SMD         |
| Open style submeter display, no enclosure | SMD OPN     |
| 2-Wire 232–485 Conv                       | 30502W485C  |
| Enercept Mounting Brackets (Set of 3)     | 3050EMBK-3  |

#### **Table 4.24: Enercept Metering Quantities**

| Dasic[/]                         | Ennanceo•                                                                                                                                                            |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| kWh, energy usage kW, real power | kWh, kW per phase and total, min kW, max kW, kWd, kVAR, kVA, PF per phase<br>and total voltage- V, L-L, L-N per phase and avg. Current - A, per phase and<br>average |

## PowerLogic Instrument Grade 5 Amp Split-Core Current Transformers

The 3090 SCCT series of split-core current transformers provide secondary amperage proportional to the primary (sensed) current. For use with Circuit Monitors, Power Meters, data loggers, chart recorders and other instruments the 3090 SCCT series provides a cost-effective means to transform electrical service amperages to a 0–5A level compatible with monitoring equipment.

#### Table 4.25:

| Description                               | Catalog No. |
|-------------------------------------------|-------------|
| Split Core CT—200 A (sz.2): 1.25" x 1.51  | 3090SCCT022 |
| Split Core CT-300 A (sz.2): 1.25" x 1.51  | 3090SCCT032 |
| Split Core CT—400 A (sz.3): 2.45" x 2.89  | 3090SCCT043 |
| Split Core CT-600 A (sz.3): 2.45" x 2.89  | 3090SCCT063 |
| Split Core CT—800 A (sz.3): 2.45" x 2.89  | 3090SCCT083 |
| Split Core CT—800 A (sz.4): 2.45" x 5.05  | 3090SCCT084 |
| Split Core CT—1200 A (sz.4): 2.45" x 5.50 | 3090SCCT124 |
| Split Core CT—1600 A (sz.4): 2.45" x 5.50 | 3090SCCT164 |

**NOTE:** Max. Voltage without additional insulation 600 Vac. Do not apply 600 V Class current transformers to circuits having a phase-to-phase voltage greater than 600 V, unless adequate additional insulation is applied between the primary conductor and the current transformers. Square D assumes no responsibility for damage of equipment or personal injury caused by transformers operated on circuits above their published ratings.



SA Split-Core Current Transformers

Ь

[7] See Handout / Instruction Bulletin for derating properties.4-20



SQUARE D by Schneider Electric schneider-electric.us



## **Multi Circuit Energy Meters**

The PowerLogic EM4800 and EM4000 multi-circuit energy meters combine accurate electricity sub-metering with advanced communications technology. They are ideal for multi-tenant or departmental metering and M&V applications within office towers, condominiums, apartment buildings, shopping centers and other multipoint environments, or small footprint retail. This meter is available separately or as part of a Square D integrated power center (IPC) for use in building retrofits or new construction.

Each compact multipoint meter provides energy measurement for up to 24 (1CT) or 12 (2CT) single-phase circuits or 8 (3CT) 3-phase circuits. Select a model to match the desired CT type. The 0.333 V output CT option does not require shorting blocks, making it the ideal choice for retrofit installations.

All meters have an accuracy of Class 0.5%, have onboard interval logging, and feature flexible communication options with an Ethernet port that supports multiple protocols: Modbus TCP/IP, HTTP, BACnet/IP, FTP, and SNTP. EM4800 series meters have a V.90 modem while EM4000 series meters provide Modbus RTU over RS-485.

## Table 4.26: Multi Circuit Energy Meters

| Description                                                                                                    | Catalog No.   |
|----------------------------------------------------------------------------------------------------------------|---------------|
| EM4800 series; Ethernet; modem; compatible with 80mA low-power CTs; 120V control power 60 Hz                   | METSEEM488016 |
| EM4800 series; Ethernet; modem; compatible with 333mV low-power CTs; 120V control power 60 Hz                  | METSEEM483316 |
| EM4800 series; Ethernet; modem; compatible with standard 5A CTs; 120V control power 60 Hz                      | METSEEM480516 |
| EM4000 series; Ethernet; Modbus RTU over RS-485; compatible with 80mA low-power CTs; 120V control power 60 Hz  | METSEEM408016 |
| EM4000 series; Ethernet; Modbus RTU over RS-485; compatible with 80mA low-power CTs; 277V control power 60 Hz  | METSEEM408036 |
| EM4000 series; Ethernet; Modbus RTU over RS-485; compatible with 333mV low-power CTs; 120V control power 60 Hz | METSEEM403316 |
| EM4000 series; Ethernet; Modbus RTU over RS-485; compatible with 333mV low-power CTs; 277V control power 60 Hz | METSEEM403336 |
| 200 A current transformer (CT), 80 mA secondary, solid-core (1 CT)                                             | METSECT80200  |
| 400 A current transformer (CT), 80 mA secondary, solid-core (1 CT)                                             | METSECT80400  |
| 600 A current transformer (CT), 80 mA secondary, solid-core (1 CT)                                             | METSECT80600  |
| 50 A .333 V Split Core Current Transformer with 0.75 in Window Size                                            | ECT075050SC   |
| 100 A .333 V Split Core Current Transformer with 0.75 in Window Size                                           | ECT075100SC   |
| 150 A .333 V Split Core Current Transformer with 0.75 in Window Size                                           | ECT075150SC   |
| 200 A .333 V Split Core Current Transformer with 0.75 in Window Size                                           | ECT075200SC   |
| 100 A .333 V Split Core Current Transformer with 1.25 in Window Size                                           | ECT125100SC   |
| 150 A .333 V Split Core Current Transformer with 1.25 in Window Size                                           | ECT125150SC   |
| 200 A .333 V Split Core Current Transformer with 1.25 in Window Size                                           | ECT125200SC   |
| 400 A .333 V Split Core Current Transformer with 1.25 in Window Size                                           | ECT125400SC   |
| 200 A .333 V Split Core Current Transformer with 2.00 in Window Size                                           | ECT200200SC   |
| 400 A .333 V Split Core Current Transformer with 2.00 in Window Size                                           | ECT200400SC   |
| 600 A .333 V Split Core Current Transformer with 2.00 in Window Size                                           | ECT200600SC   |
| 600 A .333 V Split Core Current Transformer with 3 x 5 in Window Size                                          | ECT300600SC   |
| 800 A .333 V Split Core Current Transformer with 3 x 5 in Window Size                                          | ECT300800SC   |





50 A CT



Typical BCPMSC panelboard installation

## PowerLogic Branch Circuit Power Meter

The ideal solution for data center managers, energy or facility managers, engineers and operational executives who are responsible for delivering power to critical applications. In corporate and hosted data center facilities, this technology helps you plan and optimize the critical power infrastructure to meet the demands of continuous availability.

The PowerLogic BCPM is a highly accurate, full-featured metering product designed for the unique, multi-circuit and minimal space requirements of a high performance power distribution unit (PDU) or remote power panel (RPP). It offers class 1 (1%) power and energy system accuracy (including 50 A or 100 A CTs) on all branch channels.

The BCPM monitors up to 84 branch circuits with a single device and also monitors the incoming power mains to provide information on a complete PDU. It also offers multiphase measurement totals with flexible support for any configuration of multi-phase breakers. Full alarming capabilities ensure that potential issues are dealt with before they become problems.

Unlike products designed for specific hardware, the flexible BCPM will fit any PDU or RPP design and supports both new and retrofit installations. It has exceptional dynamic range and accuracy, and optional feature sets to meet the energy challenges of mission critical data centers.

#### **Key Features:**

- Integrated Ethernet with advanced SNMP, BACnet, and Modbus TCP support on • BCPME models
- Class 1% system accuracy (including 50 A or 100 A branch CTs
- Flexible configuration of Logical Meters for multi-phase loads .
- Full PDU monitoring ٠
- Flexible configuration •
- Split core version for retrofit installations
- ٠ Wide monitoring range
- Low current monitoring ٠
- Advanced alarming .
- Easily integrates into a PowerLogic system or other existing networks using Modbus™ ٠ communications

#### Table 4.27: BCPM with Solid-Core CTs

| Description                                                                                   | Catalog<br>Number |
|-----------------------------------------------------------------------------------------------|-------------------|
| 42-circuit solid-core power & energy meter, 100A CTs (2 strips), ¾ in. spacing                | BCPMA042S         |
| 84-circuit solid-core power & energy meter, 100A CTs (4 strips), ¾ in. spacing                | BCPMA084S         |
| 42-circuit solid-core power & energy meter, 100A CTs (2 strips), 1 in. spacing                | BCPMA142S         |
| 84-circuit solid-core power & energy meter, 100A CTs (4 strips), 1 in. spacing                | BCPMA184S         |
| 24-circuit solid-core power & energy meter, 100A CTs (2 strips), 18 mm spacing                | BCPMA224S         |
| 36-circuit solid-core power & energy meter, 100A CTs (2 strips), 18 mm spacing                | BCPMA236S         |
| 42-circuit solid-core power & energy meter, 100A CTs (2 strips), 18 mm spacing                | BCPMA242S         |
| 48-circuit solid-core power & energy meter, 100A CTs (4 strips), 18 mm spacing                | BCPMA248S         |
| 72-circuit solid-core power & energy meter, 100A CTs (4 strips), 18 mm spacing                | BCPMA272S         |
| 84-circuit solid-core power & energy meter, 100A CTs (4 strips), 18 mm spacing                | BCPMA284S         |
| 42-circuit solid-core branch current, mains power meter, 100A CTs (2 strips), 3/4 in. spacing | BCPMB042S         |
| 84-circuit solid-core branch current, mains power meter, 100A CTs (4 strips), 3/4 in. spacing | BCPMB084S         |
| 42-circuit solid-core branch current, mains power meter, 100A CTs (2 strips), 1 in. spacing   | BCPMB142S         |
| 84-circuit solid-core branch current, mains power meter, 100A CTs (4 strips), 1 in. spacing   | BCPMB184S         |
| 24-circuit solid-core branch current, mains power meter, 100A CTs (2 strips), 18 mm spacing   | BCPMB224S         |
| 36-circuit solid-core branch current, mains power meter, 100A CTs (2 strips), 18 mm spacing   | BCPMB236S         |
| 42-circuit solid-core branch current, mains power meter, 100A CTs (2 strips), 18 mm spacing   | BCPMB242S         |
| 48-circuit solid-core branch current, mains power meter, 100A CTs (4 strips), 18 mm spacing   | BCPMB248S         |
| 72-circuit solid-core branch current, mains power meter, 100A CTs (4 strips), 18 mm spacing   | BCPMB272S         |
| 84-circuit solid-core branch current, mains power meter, 100A CTs (4 strips), 18 mm spacing   | BCPMB284S         |
| 42-circuit solid-core branch current meter, 100A CTs (2 strips), ¾ in. spacing                | BCPMC042S         |
| 84-circuit solid-core branch current meter, 100A CTs (4 strips), 3/4 in. spacing              | BCPMC084S         |
| 42-circuit solid-core branch current meter, 100A CTs (2 strips), 1 in. spacing                | BCPMC142S         |
| 84-circuit solid-core branch current meter, 100A CTs (4 strips), 1 in. spacing                | BCPMC184S         |
| 24-circuit solid-core branch current meter, 100A CTs (2 strips), 18 mm spacing                | BCPMC224S         |
| 36-circuit solid-core branch current meter, 100A CTs (2 strips), 18 mm spacing                | BCPMC236S         |
| 42-circuit solid-core branch current meter, 100A CTs (2 strips), 18 mm spacing                | BCPMC242S         |
| 48-circuit solid-core branch current meter, 100A CTs (4 strips), 18 mm spacing                | BCPMC248S         |
| 72-circuit solid-core branch current meter, 100A CTs (4 strips), 18 mm spacing                | BCPMC272S         |
| 84-circuit solid-core branch current meter, 100A CTs (4 strips), 18 mm spacing                | BCPMC284S         |
| 42-circuit solid-core power & energy meter w/Ethernet, 100A CTs (2 strips), 3/4 in. spacing   | BCPME042S         |
| 84-circuit solid-core power & energy meter w/Ethernet, 100A CTs (4 strips), ¾ in. spacing     | BCPME084S         |
| 42-circuit solid-core power & energy meter w/Ethernet, 100A CTs (2 strips), 1 in. spacing     | BCPME142S         |
| 84-circuit solid-core power & energy meter w/Ethernet, 100A CTs (4 strips), 1 in. mm spacing  | BCPME184S         |
| 24-circuit solid-core power & energy meter w/Ethernet, 100A CTs (2 strips), 18 mm spacing     | BCPME224S         |
| 36-circuit solid-core power & energy meter w/Ethernet, 100A CTs (2 strips), 18 mm spacing     | BCPME236S         |
| 42-circuit solid-core power & energy meter w/Ethernet, 100A CTs (2 strips), 18 mm spacing     | BCPME242S         |
| 48-circuit solid-core power & energy meter w/Ethernet, 100A CTs (4 strips), 18 mm spacing     | BCPME248S         |
| 72-circuit solid-core power & energy meter w/Ethernet, 100A CTs (4 strips), 18 mm spacing     | BCPME272S         |
| 84-circuit solid-core power & energy meter w/Ethernet, 100A CTs (4 strips), 18 mm spacing     | BCPME284S         |

Р

## © 2017 Schneider Electric All Rights Reserved 6/20/2017

## Table 4.28: BCPM with Split-Core CTs

| Description                                                                                              | Catalog Number |
|----------------------------------------------------------------------------------------------------------|----------------|
| 42-circuit split-core power and energy meter, CTs and cables sold separately                             | BCPMSCA1S      |
| 84-circuit split-core power and energy meter, CTs and cables sold separately                             | BCPMSCA2S      |
| 30-circuit split-core power and energy meter, (30) 50A CTs & (2) 4 ft. cables                            | BCPMSCA30S     |
| 42-circuit split-core power and energy meter, (42) 50A CTs & (2) 4 ft. cables                            | BCPMSCA42S     |
| 60-circuit split-core power and energy meter, (60) 50A CTs & (4) 4 ft. cables                            | BCPMSCA60S     |
| 42-circuit split core power and energy meter, all boards on backplate, CTs and cables sold<br>separately | BCPMSCAY63S    |
| 84-circuit split-core power and energy meter, with (84) 50A CTs & (4) 4 ft. cables                       | BCPMSCA84S     |
| 42-circuit split-core branch current, mains power meter, CTs and cables sold separately                  | BCPMSCB1S      |
| 84-circuit split-core branch current, mains power meter, CTs and cables sold separately                  | BCPMSCB2S      |
| 30-circuit split-core branch current, mains power meter, (30) 50A CTs & (2) 4 ft. cables                 | BCPMSCB30S     |
| 42-circuit split-core branch current, mains power meter, (42) 50A CTs & (2) 4 ft. cables                 | BCPMSCB42S     |
| 60-circuit split-core branch current, mains power meter, (60) 50A CTs & (4) 4 ft. cables                 | BCPMSCB60S     |
| 42-circuit split-core branch current, mains, all boards on backplate, CTs and cables sold<br>separately  | BCPMSCBY63S    |
| 84-circuit split-core branch current, mains power meter, (84) 50A CTs & (4) 4 ft. cables                 | BCPMSCB84S     |
| 42-circuit split-core current meter, CTs and cables sold separately                                      | BCPMSCC1S      |
| 84-circuit split-core current meter, CTs and cables sold separately                                      | BCPMSCC2S      |
| 30-circuit split-core current meter, (30) 50A CTs & (2) 4 ft. cables                                     | BCPMSCC30S     |
| 42 circuit split-core current meter, (42) 50A CTs & (2) 4 ft. cables                                     | BCPMSCC42S     |
| 60-circuit split-core current meter, (60) 50A CTs & (4) 4 ft. cables                                     | BCPMSCC60S     |
| 42-circuit split-core current meter, all boards on backplate, CTs and cables sold separately             | BCPMSCCY63S    |
| 84-circuit split-core current meter, (84) 50A CTs & (4) 4 ft. cables                                     | BCPMSCC84S     |
| 42-circuit split-core power and energy meter w/Ethernet, CTs and cables sold separately                  | BCPMSCE1S      |
| 84-circuit split-core power and energy meter w/Ethernet, CTs and cables sold separately                  | BCPMSCE2S      |
| 30-circuit split-core power and energy meter w/Ethernet, (30) 50A CTs & (2) 4 ft. cables                 | BCPMSCE30S     |
| 42-circuit split-core power and energy meter w/Ethernet, (42) 50A CTs & (2) 4 ft. cables                 | BCPMSCE42S     |
| 60-circuit split-core power and energy meter w/Ethernet, (60) 50A CTs & (4) 4 ft. cables                 | BCPMSCE60S     |
| 84-circuit split-core power and energy meter w/Ethernet, (84) 50A CTs & (4) 4 ft. cables                 | BCPMSCE84S     |

Table 4.29: 1/3 V Low-Voltage Split-Core CTs for Aux Inputs (Mains)

SOUARE

by Schneider Electric schneider-electric.us

ם

| Amperage Rating | Inside Dimensions | Catalog<br>Number |
|-----------------|-------------------|-------------------|
| 50A             | 10 x 11 mm        | LVCT00050S        |
| 200A            | 16 x 20 mm        | LVCT00101S        |
| 200A            | 32 x 32 mm        | LVCT00202S        |
| 100A            | 30 x 31 mm        | LVCT00102S        |
| 200A            | 30 x 31 mm        | LVCT00202S        |
| 300A            | 30 x 31 mm        | LVCT00302S        |
| 400A            | 62 x 73 mm        | LVCT00403S        |
| 600A            | 62 x 73 mm        | LVCT00603S        |
| 800A            | 62 x 73 mm        | LVCT00803S        |
| 800A            | 62 x 139 mm       | LVCT00804S        |
| 1000A           | 62 x 139 mm       | LVCT01004S        |
| 1200A           | 62 x 139 mm       | LVCT01204S        |
| 1600A           | 62 x 139 mm       | LVCT01604S        |
| 2000A           | 62 x 139 mm       | LVCT02004S        |
| 2400A           | 62 x 139 mm       | LVCT02404S        |

Table 4.30: 1/3 V Low-Voltage Solid-Core CTs for Aux Inputs (Mains)

| Amperage Rating | Inside Dimensions | Catalog<br>Number |
|-----------------|-------------------|-------------------|
| 50A             | 10 mm             | LVCT20050S        |
| 100A            | 10 mm             | LVCT20100S        |
| 200A            | 25 mm             | LVCT20202S        |
| 400A            | 31 mm             | LVCT20403S        |

## Table 4.31: BCPM Split-Core Branch CTs and Adapter Boards

| Description                                              | Catalog Number |
|----------------------------------------------------------|----------------|
| BCPM adapter boards, quantity 2, for split core BCPM     | BCPMSCADPBS    |
| BCPM 50A split core CTs, Quantity 6, 1.8 m lead lengths  | BCPMSCCT0      |
| BCPM 50A split core CTs, quantity 6, 6 m lead lengths    | BCPMSCCT0R20   |
| BCPM 100A split core CTs, Quantity 6, 1.8 m lead lengths | BCPMSCCT1      |
| BCPM 100A split core CTs, Quantity 6, 6 m lead lengths   | BCPMSCCT1R20   |
| BCPM 200A split core CTs, Quantity 1, 1.8 m lead lengths | BCPMSCCT3      |
| BCPM 200A split core CTs, Quantity 1, 6 m lead lengths   | BCPMSCCT3R20   |

## Table 4.32: Additional Accessories for use with BCPM Products

| Description                                                      | Catalog Number |
|------------------------------------------------------------------|----------------|
| BCPM circuit board cover                                         | BCPMCOVERS     |
| CT repair kit for solid core BCPM (includes one CT)              | BCPMREPAIR     |
| Additional 100A split core CT for use with solid core repair kit | H6803R-0100    |
| Modbus to BACnet protocol converter                              | E8951          |
| Flat Ribbon cable (quantity 1) for BCPM, length = 0.45 m         | CBL008         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 1.2 m          | CBL016         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 1.5 m          | CBL017         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 1.8 m          | CBL018         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 2.4 m          | CBL019         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 3.0 m          | CBL020         |
| Flat Ribbon cable (quantity 1) for BCPM, length = 6.1 m          | CBL021         |
| Round Ribbon cable (quantity 1) for BCPM, length = 1.2 m         | CBL022         |
| Round Ribbon cable (quantity 1) for BCPM, length = 3 m           | CBL023         |
| Round Ribbon cable (quantity 1) for BCPM, length = 6.1 m         | CBL024         |
| Round Ribbon cable (quantity 1) for BCPM, length = 0.5 m         | CBL031         |
| Round Ribbon cable (quantity 1) for BCPM, length = 0.8 m         | CBL033         |

## PowerLogic Multi-Circuit Meter





3-phase, 4-wire (with neutral current

## PowerLogic Multi-Circuit Meter

Designed for OEM style placement in electrical distribution equipment the MCM8364 is configurable to meter 1 or 3 phases of up to eight individual loads, six loads if neutral monitoring is required. The MCM will monitor up to 10,000 amps per service using standard 5 Amp CTs. All of the metered circuits must share a common voltage source. The MCM8364 is a great solution for monitoring critical power distribution equipment and provides 24 different electrical metering quantities plus an additional nine Modbus register alarms.

With one RS-485 connection, the multi-circuit meter provides Modbus RTU communications output that communicates to each individual metered circuit. Up to 30 multi-circuit meters can be addressed on the same Modbus network. The multi-circuit meter can provide warnings to the central monitoring computer via its Modbus output using the MNode software provided or can be integrated into PowerLogic SMS software. The MCM also works with the submeter display as shown below.

#### Electrical Data:

Energy Consumption (kWHr), Real Power (kW), Reactive Power (kVAR), Apparent Power (kVA), Power Factor Total, Voltage, L-L, avg. of 3 phases, Voltage, L-N, avg. of 3 phases, Current, average of 3 phases, Real Power (kW) phase A, B, & C, Power Factor, phase A, B,&C, Line to Line Voltage, phase A-B, B-C, A-C, Line to Neutral Voltage, phase A-N, B-N, C-N, Current, phase A, B, & C, Frequency (measured from phase A) (Hz).

#### Modbus Alarms:

Over Voltage, Under Voltage, Over Current, Under Current, Over kVA, Under kVA, Phase Loss A, Phase Loss B, Phase Loss C

| Table - | 4.33: |  |
|---------|-------|--|
|---------|-------|--|

| Description              | Catalog No. |
|--------------------------|-------------|
| Multi-Circuit Meter 8364 | MCM8364     |
|                          |             |

## PowerLogic Submeter Display

The PowerLogic Submeter Display (SMD) is a comprehensive electrical submetering display that provides a view of electrical parameters from multiple metering products with one networked LCD. In addition to viewing system data on the display itself, you can also view data on a remote PC via a network connection. Touch pad buttons provide a convenient way to view downstream devices on the power-monitoring network. The display is RS-485 Modbus RTU compatible. It has additional RS-485 and RS-232 Modbus ports for networking to additional displays or to a master PC. The submeter display is compatible with the following metering devices: BCM, BCPM, EM3500, MCM, & Enercept<sup>™</sup> meters.

#### Table 4.34:

| Description                               | Catalog No. |
|-------------------------------------------|-------------|
| Submeter display mounted in enclosure     | SMD         |
| Open style submeter display, no enclosure | SMD OPN     |



Submeter Display



by Schneider Electric

schneider-electric.us

Communications

New!)

Class 3030



## **Com'X Data Loggers and Energy Servers** Powerful data logging with flexible communication options

Connect your entire power system with Com'X data loggers and energy servers. Com'X Connect your entire power system with Com'X data loggers and energy servers. Com'X surpasses conventional gateways and data loggers by incorporating multiple capabilities into one compact device. In addition to being a real-time gateway to downstream devices, Com'x logs all essential WAGES and environmental readings through a broad range of downstream data feeds and local I/O. Logged data can be automatically pushed to a hosted platform or downloaded for report generation. Ethernet and Wi-Fi ready, Com'x leverages on the building's existing IT infrastructure to reduce cost. Its GPRS capability makes it ideal for sites with no access to IT networks.

## Easy configuration and commissioning

Configuration and commissioning is made easy by automatic device detection, and IP address setting and allocation. No additional software is needed for the intuitive, webbased configuration pages. A device library enables quick configuration for more than 70 Modbus devices and also provides for custom configuration of additional devices Configuration via Wi-Fi lets technicians use tablets or notebooks to work comfortably away from switchboard rooms.



## Embedded energy management software

The Com'X 510 Energy Server further includes embedded web pages that display data in a meaningful way so you can make informed decisions about your energy usage. Web pages display real-time data in easy to understand tabular and summary formats. In addition, you can access simple analysis of historical data in bar graph or trending formats. Pages are accessible via any standard web browser without plug-ins or additional components.

## Table 4.35: Com'X Data Loggers, Energy Services, and Accessories

| Description                                                    | Catalog Number |
|----------------------------------------------------------------|----------------|
| Com'X200 Data logger with internal 100 to 230 VAC power supply | EBX200         |
| Com'X210 Data logger, requires 24 VDC power supply             | EBX210         |
| Com'X510 Energy server, requires 24 VDC power supply           | EXB510         |
| Wi-Fi USB stick                                                | EBXAUSBWIFI    |
| Zigbee USB stick                                               | EXBAUSBZIGBEE  |
| GPRS modem with SIM card                                       | EBXAGPRSSIM    |
| GPRS modem without SIM card                                    | EBXAGPRS       |
| External GPRS antenna                                          | EBXAANT5M      |

## Communications — Link150 Ethernet

The Link150 gateway provides fast, reliable Ethernet connectivity in the most demanding applications, from a single building to a multi-site enterprise. This gateway supports meters, monitors, protective relays, trip units, motor controls and other devices that need to communicate data quickly and efficiently. It is your simple, cost-effective serial line to

Communications for high-speed access to critical information

Gateway

Class 3030

## SQUARE D by Schneider Electric schneider-electric.us

#### Link150 Ethernet Gateway



Link150 has embedded web pages for easy setup and maintenance



full Ethernet connectivity.

Link150 Ethernet Gateway

- Building automation
- · Factory automation



#### Security

- · Secure user interface including user's name and password for login
- Advanced security features to allow users to specify which Modbus TCP/IP master devices may access attached serial slave devices
  - Modbus TCP/IP filtering feature
  - Allows user to specify the level of access for each master device as Read-only or Full access
- · Web pages provide easy configuration and setup

#### Advantages

- Easy to install and setup
- Easy to maintain
- Compatible with Schneider Electric software offerings (StruxureWare Power Monitoring Expert, StruxureWare PowerSCADA Expert, etc.)
- Compatible with Com'X 200/210 and Com'X 510 Energy Servers
- Reliable Modbus to Ethernet protocol conversion

#### Table 4.36: Ethernet Gateway

| Туре                                 | Catalog Number |
|--------------------------------------|----------------|
| Link150 Ethernet gateway             | EGX150         |
| Modbus 3 m cable RJ-45 to free wires | VW3A8306D30    |



Modbus 3 m cable RJ-45 to free wires

1

POWER MONITORING AND

**Engineering Services** 

D by Schneider Electric





CLERCHT IN MARCOCK

## **Consulting and Analysis** Power System Engineering

The Square D Power System Engineering team offers a wide range of engineering services to improve the safety, efficiency and reliability of your power distribution system. The team is comprised of registered professional engineers, safety trained and equipped, to perform a variety of engineering functions.

## **Power System Studies**

The Square D Power System Engineering Team provides expertise for a variety of electrical power system studies. Some of the more common system studies include...

- Short-circuit analysis
- Motor starting/torque-speed
- Time-current coordination Motor starting/voltage drop
- · Safe motor re-energization
- Harmonic analysis
- Transient analysis

Appropriate Personal Protective Equipment (PPE)

NFPA 70E—Safe Workplace Practices Training provided by OSHA authorized outreach instructors

Recommendations and solutions to reduce potential arc flash hazards

Low cost arc flash reduction methods

Arc flash label affixation

PowerLogic<sup>™</sup> Energy and Power

**Management Systems** 

- Power factor correction analysis
- Other system specific analysis

Square D offers on-site services to perform arc flash analysis for a facility, complex, office, or campus. An Arc flash analysis is used to determine ...

- Flash Protection Boundary
- Incident Energy Value

**Arc Flash Analysis** 

Hazard/Risk Category

## Features of Square D arc flash analysis include...

- Time current coordination analysis showing both existing and recommended over/current device settings
- Short-circuit study to ensure adequacy of equipment
- ٠ Onsite verification and documentation of equipment
- Arc flash labels (populated with the results of the arc flash analysis)

## **Power Quality Studies**

Square D offers onsite power quality engineering studies and solutions to eliminate process disruptions, power system shutdowns, and equipment damage due to electrical power system disturbances. A power quality study is used to ...

severity

.

- Determine compliance with the IEEE 519-Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems guidelines
- Identify most cost-effective solution to power quality problems
- · Solve process disruptions due to power disturbances

## Power System Assessment

Square D offers engineering services to meet a variety of power system needs ....

Basic codes and standards compliance Protective coordination

Maintenance program review

Recommendations for power system optimization

assessment

- Power quality troubleshooting and analysis
  - Power factor and harmonics analysis
  - · Electrical safety hazards
  - Short-circuit withstand overview

## **Power System Improvement Projects**

Square D offers engineering services for ...

- New equipment installation
- Existing equipment modification
- Ground Fault Schemes for multiple source distribution systems
- Automatic Transfer Control Schemes & Generator Operations

Square D professional engineers - safety trained and equipped - will listen to your concerns and goals, define the problem or enhancement, and engineer the solution that best satisfies your needs.

For additional information on power system engineering services and pricing, contact your nearest Square D/Schneider Electric office.

- Single-line documentation of power system
- Power monitoring recommendations
- Loading measurements

- High Resistance Grounding (HRG) Conversion





## **Engineering Services**







#### Advanced Microgrid Solutions and Distributed Energy Resource Management

With our custom solutions and proven expertise, we deliver advanced microgrids that offer the advantages of grid independence – without forfeiting the benefits of being part of the central grid. Our flexible microgrid architecture features a scalable set of grid components designed to efficiently manage your entire energy infrastructure, including distributed generation, energy storage, and load demand, while giving you the ability to easily adapt the system to your changing needs. Learn more at www.microgrids. schneider-electric.us

#### Industrial Energy Efficiency

Schneider Electric Certified Energy Managers (CEM's) work on-site with knowledgeable plant personnel to develop a long-term, comprehensive, "Energy Action Plan", that serves as the blueprint for energy savings. Unlike performance contracts or one-time energy audits, the Total Energy Control<sup>SM</sup> program offers a strategic partnership for energy-intensive industrials who want to improve energy efficiency

- Total Energy Control Comprehensive integration of all three areas affecting energy efficiency
  - Procurement (electricity and gas)

  - Demand management
     Optimization of process and plant utilities
- Program deliverables:
  - Long-term Energy Action Plan
  - Energy efficiency projects
  - Ongoing accountability for results

#### **Engineered Solutions**

Schneider Electric provides an engineered solution approach to your specific power system applications. Our total solutions for power monitoring and power system controls allow greater safety, reliability, and energy efficiency of your power systems. As a long standing industry leader in Power Monitoring and Control Systems, we understand your power system requirements and needs.

All of our Engineered Solutions are tailored to your specific system requirements. Schneider Electric is your total Solution provider.

#### **Power Monitoring Applications**

Increased Reliability and Energy Efficiency are key results produced from our Power Monitoring Applications. Schneider Electric power monitoring applications provide detailed reporting, testing and analysis capabilities for your systems and related components

- EPSS Emergency Power Supply Systems- The PowerLogic EPSS Test Report provides information regarding the health and status of the emergency power supply system, including automatic transfer switches and generators.
- SER Sequence of Events Recording- The PowerLogic Sequence of Events Recorder (SER) Module is a root-cause analysis tool for rapid response for problem resolution that is ideal for pinpointing the cause of a service disruption in very large complex power systems
- WAGES Water, Air Gas, Electric, Steam- PowerLogic energy and power management systems can provide instantaneous readings, alarm notifications, and graphical diagrams for monitoring electrical and piped utilities (Water, Air, Gas, Electric, Steam).
- ENM Event Notification Module- The PowerLogic Event Notification Module allows automatic paging to alphanumeric pagers, cell phones and PCs.

#### **Power System Control Applications**

Automated solutions for increased Reliability and Energy Efficiency: Schneider Electric engineers provide Power System Control Applications with automated solutions for addressing your system reliability and efficiency control needs. Our offer covers Automatic Throwover Schemes, Load Shedding/Peak Shaving, and Load Preservation and Mircrogrids

- Automatic Throwover Systems Automatic selection of available utility or generator sources to maintain service continuity to connected loads.
- Load Shedding/Peak Shaving Control peak demand levels or ensure service continuity to critical load or operate breakers in accordance with user specified sequences and time delays such as bringing large motors online across several billing kw demand periods to avoid demand penalties.
- Load Preservation Fast acting sophisticated control systems designed to stabilize critical power systems to the greatest extend possible by monitoring frequency and power sources from utility plus generator capacity versus total circuit load.



PowerLogic Engineers provide graphic solutions for realtime monitoring of power systems

Ь

ADMITTING & OUTPATIENTS

PowerLogic Engineers specialize in the design and setup of Emergency Power Supply Systems (EPSS).



PowerLogic Engineers design power control systems that meet your operational requirements





## System Integration System Design and Engineering

Our Square D Engineering Services solution specialists can work with you to design or upgrade your existing system to best achieve your energy and power management objectives and informational needs. With expertise in electrical systems, communications, and automatic control systems, we can integrate, install, and commission your system for optimal performance.

- System Design and Bill of Material Recommendations
- Power Monitoring and Control
- WAGES (Water, Air, Gas, Electric, Steam)
- Enterprise web-based monitoring
- Specification development, drawings, documentation
- Enclosure panel design and build
- Metering Connection Verification/Testing
- Power distribution automation
- On-Site Installation Assistance, Component Configuration & Startup
- Turn-key project management
- Third Party Device and communication interfaces
- Configured Workstations, User Software Interfaces
- Interactive Graphic Design to mimic facility layout, one-lines, equipment status
- Custom Software, Reports & Applications Billing and Event Notification

For additional information, contact your nearest Square D / Schneider Electric office.

## Factory Assembled Equipment

Square D<sup>™</sup> PowerLogic<sup>™</sup> Factory Assembled Equipment offers a wide range of designs for metering, communications, and control applications to simplify retrofit installations. Our equipment is designed to order as a free-standing or wallmounted system. With PowerLogic<sup>™</sup> Factory Assembled Equipment, you'll receive professionally crafted, factory tested, pre-wired equipment that will greatly improve the speed of your system startup. All backed by the Square D<sup>™</sup> quality standard of excellence.

- Assemblies include meters & devices wired to terminal blocks, disconnects, and shorting blocks or test switches
- Tailored to any system voltage :
- 208/120 V, 480/277 V & 600/347 V Wye
- 240 V, 480 V & 600 V Delta
- Utilization of PT's required for higher voltage levels
- Wall mountable and easy to install using concealed holes in the back of the enclosure.
- Complete with necessary documentation and mounting hardware for quick and easy installation
- Carbon steel construction, with industry standard ANSI 61 gray powder coat finish
- Equipped with concealed hinged door, and universal pad-lockable latch.
- Custom engraved nameplates available for all units.

## Table 4.37: Industrial Enclosure Types 12 & 4, UL & CUL 508A Listed

| Available Meter Types | Digital Inputs   | Digital Outputs | Analog Inputs   | Analog Outputs  |
|-----------------------|------------------|-----------------|-----------------|-----------------|
| ION6200               | N/A              | Up to 2/ Meter  | N/A             | N/A             |
| PM5563RD              | Up to 4 / Meter  | Up to 2 / Meter | N/A             | N/A             |
| PM8244                | Up to 15 / Meter | Up to 5 / Meter | Up to 4 / Meter | Up to 2 / Meter |
| CM4000T               | Up to 8 / Meter  | Up to 7 / Meter | Up to 1 / Meter | Up to 1 / Meter |
| ION 7550 & 7560       | Up to 16 / Meter | Up to 7 / Meter | Up to 4 / Meter | Up to 4 / Meter |
|                       |                  |                 |                 |                 |

 Supports Single or Multiple Voltage Sources for Indoor (Types 1 and 12) & Outdoor (Type 4) applications

- Available with 1–4 meters per panel. Serial & Ethernet Communications are options for all units
- EGX & ION RTU Communication Enclosures with 1–4 devices per panel also available

## Integration and Equipment





- Available for the following meter types: PM8244, PM5563RD, and ION6200
- Supports Single Voltage Source only for Indoor (Type 1) applications.
- Available with 1–12 meters per panel. Serial Communications are standard for all units.
- No Digital or Analog I/O is available for this option.

## Service Entrance/Utility Socket Enclosure Type 3R, UL & CUL 508A Listed

- Available for ION8600 only, with up to 3 Digital Inputs and 4 Digital Outputs and E5600 2 Digital Inputs and 2 Digital Outputs.
- Supports Single Voltage Source only for Indoor & Outdoor (Type 3R) applications.
- Units are Ring Type with removable cover.
- Available with 1 meter per panel. Serial & Ethernet Communications options available.
- Supports Form 9S, 35S, 36S, 39S and 76S configurations for ION8600 and forms 9S and 36S for E5600.
- Options available for remote mounted CTs
- Options available for integrated, bar type CTs
- Optional Test Switch.

## Additional engineered to order products are available for a wide variety of design solutions.

- Switchgear Transfer Control Panels
- Generator Control Panels
- Load Shed Control Panels
- Sequence of Events Recording (SER) Panels
- Control System Mimic Panels
- Lighting Control Interface Panels
- Programmable Logic Controller (PLC) Control Panels (Hot Standby, Relay Control, Data Concentration etc. ...)
- Emergency Power Supply Systems (EPSS) Control Panels
- Water, Air, Gas, Electrical, and Steam (WAGES) Monitoring Panels
- Input Status Monitoring & Alarming Panels
- Remote Annunciator Control Panels
- Remote Operator Control Panels
- Serial, Ethernet, and Cellular Wireless Systems
- Server Rack and Network Equipment (Servers, Switches, UPS's) for Energy Management Systems.
- Industrialized PC's, Touch Screens (Magelis), and Human Machine Interfaces (HMI's) with Custom System Graphics.
- Designed to fit any environment Indoor (Type 1 & 12) & Outdoor (Type 3R & 4) applications

For additional information and pricing please contact your local PowerLogic sales specialist or PowerLogic Inside Sales Support at 615-287-3535. Equipment pricing and literature available for download on our website at www.powerlogic.com/ products/enclosures.

To better serve you please have the following information on hand when calling.

- Enclosure type (Indoor or Outdoor) and Environment details (Corrosive or Non-Corrosive)
- Power System Voltage Level and Type (Direct Current (DC) or Alternating Current (AC))
- Digital & Analog Input and Output requirements
- Device Type and Quantity per enclosure
- Ethernet and Serial Communication Requirements
- For Drawout Retrofits, need existing cradle type (i.e. GE, Westinghouse, etc.)

P

#### © 2017 Schneider Electric All Rights Reserved 6/20/2017

SQUARE D by Schneider Electric





High Density Metering factory assembled enclosure for multi-tenant properties

## Table 4.38: High Density Metering Cabinet

## PowerLogic High Density Metering

High Density Metering (HDM) is engineered to answer the metering and billing needs of multi-tenant properties:

## Features and Benefits

- HDM comes standard with PowerLogic PM5000 series.
- Lockable, 16 gauge NEMA Type 1 enclosure provides tamper-resistant security.
- NEMA Type 3R also available. Please consult factory.
- Mounting channel and surface-mount flanges simplify installation.
- Factory installed cover plates are included to cover empty meter spaces.
- Factory installed wiring harness simplifies installation of additional meters and provides future system expansion.
- Each High Density Metering cabinet is provided with RS485 Modbus<sup>®</sup> or Modbus Ethernet TCP communications. For wireless communications, please consult factory.
- Supports 120/208V & 277/480V WYE, and 240V & 480V Delta System Types, 1Ph or 3Ph
- CTs required. Must select separately.

#### High Density Meter System Includes:

- Enclosure
- · Power Meters, installed
- Installation bulletin for Enclosure
- Wall hanging bracket
- Installation bulletin for Meters

|          |        | 0              |                         |                   |                                                                                                                                                                                                              |
|----------|--------|----------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category | Meter  | Enclosure Size | Number of Meters<br>[8] | Enclosure Rating  | Description                                                                                                                                                                                                  |
| HDM      | PM5110 | 1, 4 or 8      | 1–8                     | Type 1 or Type 3R | High Density Meter Enclosure with PM5110 meters; Modbus RTU serial<br>communications; Ideal for single or three phase indoor commercial building<br>applications                                             |
| HDM      | PM5330 | 1, 4 or 8      | 1–8                     | Type 1 or Type 3R | High Density Meter Enclosure with PM5330 meters; Modbus RTU serial<br>communications; Ideal for single or three phase indoor commercial building<br>applications                                             |
| HDM      | PM5340 | 1              | 1                       | Type 1 or Type 3R | High Density Meter Enclosure with PM5340 meters; Modbus TCP Ethernet<br>Communications; Ideal for single or three phase indoor commercial building<br>applications                                           |
| HDM      | PM5560 | 1, 4 or 8      | 1–8                     | Type 1 or Type 3R | High Density Meter Enclosure with PM5560 meters; Dual wiring for both<br>Modbus RTU serial and Modbus TCP Ethernet communicaions; Ideal for<br>single or three phase indoor commercial building applications |

### Table 4.39: Accessories

| Description                                                   | Catalog No. |
|---------------------------------------------------------------|-------------|
| 50 Amp HDM Solid Core Current Transformer, 1.13" window size  | HDMCT050S1  |
| 100 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT100S1  |
| 125 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT125S1  |
| 150 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT150S1  |
| 200 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT200S1  |
| 250 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT250S1  |
| 400 Amp HDM Solid Core Current Transformer, 1.13" window size | HDMCT400S1  |



[8] Meters Ordering Notes: Please indicate the number of meters to be pre-installed when placing your order. You may order any number of meters in the enclosure between one and the maximum number of meters each cabinet will hold.

## PowerLogic™ Energy and Power Management Systems

## Support Services





## **Technical Engineering Support Services**

No power management system is complete without it. Technical support should go beyond basic troubleshooting. Continued optimization and maintenance extends the life of your system and ensures it's working efficiently and effectively. Our number one priority is to help you protect your investment and get the most out of it.

- · Proactive diagnostics and maintenance
- · Access to our self-help web portal and knowledge base
- · Email, telephone, and remote VPN troubleshooting assistance
- On-demand and in-person training

A variety of service levels available based on your needs and budget, plus options addons such as onsite maintenance or 24x7 support, allows you to build the support that's right for your system.

#### Premium +

Our most comprehensive service level is ideal for large organizations with mission critical systems, multiple locations and/or in-house energy management expertise.

#### Premium

Great for the experienced manager with complex power management systems and/or multiple locations, you can choose Premium support and partner with a dedicated engineer to help you drive improved system performance.

#### Priority

Sign up for Priority support and benefit from the expertise of our senior technical engineers. They can remotely connect to your system and resolve issues while you observe or work on other tasks.

#### Standard

We stand behind our products. If you have the time and knowledge to do-it-yourself, then we're happy to assist you with troubleshooting or answer your questions at no extra cost. Priority Support: Excellent Service, Free Software Upgrades, Training Discounts & More!

#### **Energy Performance Services**

Unleash Your System's True Potential with the Power of Partnership

Energy Performance Services helps you improve and sustain energy performance, reduce costs, and support compliance efforts. From facility insight to optimization solutions, let us customize an energy management program that's right for you. Contact your representative and ask them about power quality analysis or an energy health check.

#### Solutions to fit your needs:

- Facility Insight Solutions—These core energy health checks designed to evaluate your existing systems
- Optimization Solutions—Let our team of experts monitor or fine-tune your systems to maximize energy savings, efficiency and power quality.

Choose from remote or onsite solutions to ensure sustained results year over year. Various funding options available. Visit www.schneider-electric.com/eps or contact us at 615-287-3535.

## Power Management University (PMU)

Attending a PMU sponsored course will enable attendees to better utilize their Schneider-Electric power monitoring solution thus enabling them to realize energy savings as quick as possible. PMU offers a variety of options with instructor led options being 80% hands-on, with each student having their own lab workstation. Below is a list of the different training options offered by PMU.

| Course                                                                                       | Course No.        | Length    |
|----------------------------------------------------------------------------------------------|-------------------|-----------|
| Factory Courses: Software Solutions                                                          |                   |           |
| Power Monitoring Fundamentals Bundle<br>(includes 12-mo. On-Demand Campus access)            | 3000PMUFUNDSPMCR  | 4 Days    |
| Power Monitoring Fundamentals<br>(without 12-mo. On-demand Campus access)                    | 3000PMUFUNDSPM    | 4 Days    |
| Power Monitoring Designer                                                                    | 3000PMUPROG       | 4 Days    |
| Power Monitoring Administrator                                                               | 3000PMUADMINSPM   | 4 Days    |
| Other Software Courses                                                                       |                   |           |
| Hardware Installation and Troubleshooting                                                    | 3000PLUC100       | 4 Days    |
| PowerSCADA Expert Administrator                                                              | 3000PMUPLSADMIN   | 4 Days    |
| Online Training Solutions                                                                    |                   |           |
| On-Demand Campus (one-year subscription—online access)                                       | 3000PMUDEMAND12   | 12 months |
| SMSTrainer (one-year subscription—online access)                                             | 3000PMUSMSTRAINER | 12 months |
| EEMTrainer (one-year subscription—online access)                                             | 3000PMUEEMTRAINER | 12 months |
| webED, custom webinar training for up to five people<br>(call or email for more information) | 3000PLUCWEBCST    | 3–4 hours |

Ь







## The Sepam Range

Sepam protection relays are time-tested, high-performance devices that ensure dependability. This range of products was designed with a simple idea in mind: All users should be able to find a solution corresponding exactly to their needs with the right balance between performance, simplicity and cost. With Series 10, 20, 40 and 80, the Sepam range does just this. This family of relays offers a solution for every application need, specifically targeting industrial installations. These multi-functional protection devices allow an easy and hassle-free startup with simple-to-use programming software. Sepam relays also comply with the latest communication protocols on the market, including IEC61850, DNP3 and Modbus. In addition, all relays within this range come with a standard 10 year warranty and conformal coating for protection against harsh environments.

## **Features and Benefits**

- Compact devices with clearly defined connection terminals allowing for easy installation
- User-friendly software with built-in manuals for every relay and support for offline programming
- Application-specific design ensuring appropriate protection for any given application
- . Low power CT options for the use of relays on new installations where the load is low
- Field-upgradable technology allows user to stay up-to-date on the latest hardware and software

## Sepam Series 10

The Sepam Series 10 relays are suitable for basic protection applications involving current metering.

Applications covered:

- Substation
- Transformer

#### Sepam Series 20

The Series 20 consists of high-performing solutions suited for standard applications requiring current or voltage metering.

Applications covered:

- Substation
- Transformer
- Motor
- Busbar

#### Sepam Series 40

The Series 40 family of protection relays are designed for demanding applications requiring current, voltage and/or frequency metering.

Applications covered:

- Substation
- Transformer
- Motor
- Generator

#### Sepam Series 80

The Series 80 relays are for custom applications requiring enhanced protection of electrical distribution networks.

Applications covered:

- Substation
  - Transformer
- Motor
- Generator
- Busbar
- Capacitor



Sepam Series 80



Sepam Series 10



Sepam Series 20 and 40



## **Protection Configurations**

Four relay series with increasing protection capabilities for six types of applications to provide all possible protection configurations

| Table 4.40: Protection Configurations |                                               |                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |  |  |  |  |
|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                       | Series 10                                     | Series 20                                                                                                                                                                      | Series 40                                                                                                                                                                                                                                             | Series 80                                                                                                                                                                                                                                                               |  |  |  |  |
| Protection Functions                  |                                               |                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |  |  |  |  |
|                                       | 49RMS, 50/51, 50G/<br>51G, 50N/51N, 68,<br>86 | 26/63, 27/27S, 27D, 27R, 30, 37, 38/49T, 46,<br>48, 49RMS, 50/51, 50BF, 50G/51G, 50N/<br>51N, 51LR, 59, 59N, 66, 68, 79, 81H, 81L,<br>81R, 86, 94/69, CPLU 50/51, CPLU 50N/51N | 25, 26/63, 27/275, 27D, 27R, 30, 32R,<br>32Q/40, 37, 38/49T, 46, 47, 48, 49RMS,<br>50/51, 50BF, 50G/51G, 50N/51N, 50V/51V,<br>51LR, 59, 59N, 60/60FL, 66, 67, 67N/<br>67NC, 68, 79, 81H, 81L, 81R, 86, 94/69,<br>21FL, 46BC, CPLU 50/51, CPLU 50N/51N | 12, 14, 21B, 24, 25, 26(63, 27/275, 27D, 27R, 30, 32P, 32Q/40, 37, 37P, 38/49T, 40, 46, 47, 48, 49RMS, 50/27, 50/51, 50BF, 50G/51G, 50N/51N, 50V/51V, 51C, 51LR, 59, 59N, 60/60FL, 64G, 64REF, a 66, 67, 67N/67NC, 68, 74, 78PS, 79, 81H, 81L, 81R, 86, 87M, 87T, 94/96 |  |  |  |  |
| Characteristics                       | -                                             | 1                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |  |  |  |  |
| Logic input/outputs                   | Inputs 0-4                                    | Inputs 0–10                                                                                                                                                                    | Inputs 0–10                                                                                                                                                                                                                                           | Inputs 0–42                                                                                                                                                                                                                                                             |  |  |  |  |
| Logic input outputs                   | Outputs 3-7                                   | Outputs 4–8                                                                                                                                                                    | Outputs 4–8                                                                                                                                                                                                                                           | Outputs 5–23                                                                                                                                                                                                                                                            |  |  |  |  |
| Temperature sensors                   | 0                                             | 0–8                                                                                                                                                                            | 0–16                                                                                                                                                                                                                                                  | 0–16                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                       | Current 3I + Io                               | Current 3I + Io                                                                                                                                                                | Current 3I + Io                                                                                                                                                                                                                                       | Current 2x 3I + 2x Io                                                                                                                                                                                                                                                   |  |  |  |  |
| Channels                              | _                                             | Voltage 3 V + Vo                                                                                                                                                               | Voltage 3 V + Vo                                                                                                                                                                                                                                      | Voltage 2x 3 V + Vo                                                                                                                                                                                                                                                     |  |  |  |  |
| Channels                              | —                                             | LPCT [1]                                                                                                                                                                       | LPCT [1]                                                                                                                                                                                                                                              | LPCT [1]                                                                                                                                                                                                                                                                |  |  |  |  |
|                                       | 0–1                                           | 1–2                                                                                                                                                                            | 1–2                                                                                                                                                                                                                                                   | 2-4                                                                                                                                                                                                                                                                     |  |  |  |  |
| Communication Ports                   | ModBus, IEC 103                               | ModBus, IEC 103, DNP3, IEC 61850                                                                                                                                               | ModBus, IEC 103, DNP3, IEC 61850                                                                                                                                                                                                                      | ModBus, IEC 103, DNP3, IEC 61850                                                                                                                                                                                                                                        |  |  |  |  |
|                                       | -                                             | -                                                                                                                                                                              | Redundancy                                                                                                                                                                                                                                            | Redundancy                                                                                                                                                                                                                                                              |  |  |  |  |
|                                       | _                                             | -                                                                                                                                                                              | _                                                                                                                                                                                                                                                     | Goose Message                                                                                                                                                                                                                                                           |  |  |  |  |
|                                       | Mathin 101                                    | Martinia (01                                                                                                                                                                   | Matrix [2]                                                                                                                                                                                                                                            | Matrix [2]                                                                                                                                                                                                                                                              |  |  |  |  |
| Control                               | Matrix [2]                                    | Matrix [2]                                                                                                                                                                     | Logic equation editor                                                                                                                                                                                                                                 | Logic equation editor                                                                                                                                                                                                                                                   |  |  |  |  |
|                                       | _                                             | _                                                                                                                                                                              | _                                                                                                                                                                                                                                                     | Logipam [3]                                                                                                                                                                                                                                                             |  |  |  |  |
| Others                                | _                                             | _                                                                                                                                                                              | _                                                                                                                                                                                                                                                     | Front memory cartridge with settings                                                                                                                                                                                                                                    |  |  |  |  |
| Other                                 | _                                             | _                                                                                                                                                                              | Backup 48 hours (capacitor)                                                                                                                                                                                                                           | Backup lithium battery [4]                                                                                                                                                                                                                                              |  |  |  |  |

| Table | 4.41: | ANSI | Codes |
|-------|-------|------|-------|
|       |       |      |       |

| Code    | Definition                     | Code             | Definition                                             |
|---------|--------------------------------|------------------|--------------------------------------------------------|
| 12      | Overspeed (2 set points)       | 50N/51N          | Ground fault                                           |
| 14      | Underspeed (2 set points)      | 50V/51V          | Voltage restrained overcurrent                         |
| 21B     | Underimpedance                 | 51C              | Capacitor bank unbalance                               |
| 21FL    | Fault Locator                  | 51LR             | Locked rotor                                           |
| 24      | Overfluxing (V/Hz)             | 59               | Overvoltage (L-L or L-N)                               |
| 25      | Synch-check                    | 59               | Overvoltage (L-L)                                      |
| 26/63   | Thermostat / Buchholz          | 59N              | Neutral voltage displacement                           |
| 27/27S  | Undervoltage (L-L/L-N)         | 60/60FL          | CT/VT supervision                                      |
| 27D     | Positive-sequence undervoltage | 64G              | 100% stator earth fault                                |
| 27R     | Remanent undervoltage          | 64REF            | Restricted earth fault                                 |
| 30      | Annunciation                   | 66               | Starts per hour                                        |
| 32P     | Directional real overpower     | 67               | Directional phase overcurrent                          |
| 32Q/40  | Directional reactive overpower | 67N/67NC         | Directonal ground fault                                |
| 37      | Phase undercurrent             | 68               | Logic discrimination / zone selective<br>interlocking  |
| 37P     | Directional active underpower  | 74               | Circuit connection supervision                         |
| 38/49T  | Temperature mounting           | 78PS             | Pole slip                                              |
| 40      | Field loss (underimpedance)    | 79               | Recloser (4 cycles)                                    |
| 46      | Unbalance/negative sequence    | 81H              | Overfrequency                                          |
| 46BC    | Broken conductor detection     | 81L              | Underfrequency                                         |
| 47      | Negative sequence overvoltage  | 81R              | Rate of change of frequency (df/dt)                    |
| 48      | Excessive starting time        | 86               | Latching / acknowledgement                             |
| 49RMS   | Thermal overload               | 87M              | Machine differential                                   |
| 50/27   | Inadvertent energization       | 87T              | Two-winding transformer differential                   |
| 50/51   | Phase overcurrent              | 94/69            | Circuit breaker / contactor control                    |
| 50BF    | Breaker failure                | CLPU 50/51       | Cold load pick-up with phase overcurrent<br>protection |
| 50G/51G | Ground sensitive               | CLPU 50N/<br>51N | Cold load pick-up with earth fault protection          |

- [1] [2] [3] [4]
- LPCT: low-power current transducer complying with standard IEC 60044-8. Control matrix for simple assignment of information from the protection, control and monitoring functions. Logipam ladder language (PC programming environment) to make full use of Sepam Series 80 functions. Standard lithium battery 1/2 AA format 3,6 V front face exchangeable.

© 2017 Schneider Electric All Rights Reserved 6/20/2017

# **Arc Flash Protection and Mitigation**

**Systems** 

#### New!) VAMP V321 Arc Flash Mitigation System

- VAMP V321 is the fastest and most advanced arc flash mitigation system on the market.
- As a fast-acting arc flash mitigation system, VAMP V321 reduces the level of incident energy within a switchgear, thereby reducing equipment damage.
- VAMP V321 is a modular system consisting of a central unit, input/ouput (I/O) units and arc flash sensors. Its modular design gives it the flexibility to expand and adapt to various applications in an electrical distribution system.

## System Features

- · Operates on light and/or overcurrent conditions
- Operating time of 2 ms or less •
- Supports up to 16 I/O units and 170 arc flash sensors •
- Four programmable arc protection zones per central unit •
- Fully configurable using VAMPSet software •
- Mimic bus display •
- Supports nearly every communication protocol on the market ٠
- Phase current measuring •
- · Ground fault current measuring
- Circuit breaker fail protection (50BF)

#### New!) VAMP V321 I/O Units

The I/O units are used to connect sensors to the central unit in the VAMP V321 system. These units are classified as either light sensor or current I/O units.



- VAM 12L, VAM 12LD: Light-sensing point sensor I/O units with connections for 10 arc sensors and 3 trip contacts
- VAM 10L, VAM 10LD: Light-sensing point sensor I/O units with connections for 10 arc sensors and 1 trip contact
- VAM 3L, VAM 3LX: Light-sensing fiber arc sensor I/O units with connections for 3 fiber loops and 1 trip contact
- VAM 4C, VAM 4CD: Dedicated I/O units used to measure current from alternative • locations

All VAMP V321 I/O units provide active indication when appropriately placed inside the switchgear enclosure. They are connected to each other using intra-unit cabling supplied by Schneider Electric.

## VAMP V321 Sensors and Accessories

- Point sensor VA1EH-x (pipe) Installed typically in the tube or next to the • compartment window.
- Point sensor VA1DA-x (surface) Compartment wall or mounting plate installation.
- Arc SLm-x Used when a large number of compartments are to be monitored.
- VX001 Modular Cable Intra-unit cabling that is used to connect the I/O units to the • central unit.

VAMP V321 is currently available in solution-based projects. Please contact a Schneider Electric representative for more information.

USEnergySalesSupport@Schneider-Electric.com



VA1EH-x



Arc SLm-x



VX001





**VAMP V321** 

schneider-electric.us







## Reactive Power Compensation and Harmonic Mitigation Solutions

How can reactive power compensation and harmonic mitigation solutions be part of your energy efficiency programs?



or correction, harmo

Power factor is a measure of how efficiently you are using electricity. In an electric power system, a load with low power factor draws more current than a load with a high power factor for the same amount of real power transferred. Utility customers with a low power factor could realize an increase or penalty in their electric bill. Over time, these penalties may reach into thousands of dollars, depending upon the utility's rate structure.

Harmonics may disrupt normal operation of other devices and increase operating costs. Symptoms of problematic harmonic levels include overheating of transformers, motors and cables, thermal tripping of protective devices, logic faults of digital devices and drives.

Harmonics can cause vibrations and noise in electrical machines (motors, transformers, reactors).

The life span of many devices can be reduced by elevated operating temperature.

Schneider Electric provides different solutions to meet different application requirements.

| Product Description                                                                       | LV | MV    | Application                                        | Product Features                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------|----|-------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ReactiVar Fixed Power Factor Capacitors                                                   | х  | х     | Power Factor correction                            | Suited for applications where the load does not change or where the<br>capacitor is switched with the load, such as on the load side of a<br>motor contactor.                                                                                           |
| ReactiVar Standard Automatic Power Factor Capacitor<br>Banks<br>(AV5000/MV5000)           | x  | х     | Power Factor correction                            | Suited for centralized power factor correction in applications where<br>plant loading is constantly changing, resulting in the need for varying<br>amounts of reactive power. Designed for electrical networks with little<br>or no harmonic content.   |
| ReactiVar Anti-Resonant Automatic Power Factor<br>Capacitor Banks<br>(AV6000/MV6000)      | х  | х     | Power Factor Correction and<br>Harmonics Filtering | Suited for centralized power factor correction in applications<br>containing harmonic energies that would otherwise damage<br>standard fixed or automatic capacitor banks.                                                                              |
| ReactiVar Harmonic Filtering Automatic Power Factor<br>Capacitor Banks<br>(AV7000/MV7000) | х  | х     | Power Factor Correction and<br>Harmonics Filtering | Provides power factor correction as well as harmonic filtering with specific harmonic order (5th) in industrial networks.                                                                                                                               |
| ReactiVar Transient Free Reactive Compensation<br>Systems<br>(AT6000/AT7000)              | х  |       | Power Factor Correction and<br>Harmonics Filtering | Enhanced technology utilizing solid state switching elements that<br>replace standard electromechanical contactors. Provides quicker<br>response to load fluctuations with transient free capacitor switching.                                          |
| AccuSine™ (PCS) Active Harmonic Filter                                                    | x  | X [1] | Active Harmonic Filtering                          | Monitors a distorted electrical signal and determines the frequency<br>and magnitude of harmonics in the signal. Cancels the harmonic<br>content with the dynamic injection of opposing phase current in the<br>distribution system or individual load. |
| ReactiVar Hybrid VAR Compensator (HVC)                                                    | х  | X [1] | Reactive Power Compensation<br>(Real-time)         | Provides real-time reactive power compensation, and voltage<br>support in networks with highly cyclical load profiles.                                                                                                                                  |

#### Table 4.42: Descriptions, Applications, and Features

## Low Voltage Fixed Capacitors

ReactiVar low voltage fixed capacitors are ideally suited for power factor correction applications where the load does not change or where the capacitor is switched with the load, such as on the load side of a motor starter. ReactiVar fixed capacitors are best suited for applications where there are no harmonic currents or voltages present.

Application Note: Capacitors are low impedance path for the harmonic currents produced by variable frequency drives, motor soft starters, welders, computers, PLCs, robotics and other electronic equipment. These harmonic currents can cause the capacitor to overheat, and shorten its life. Furthermore, the resonant circuit formed by shunt capacitors coupled with system inductances (motors and transformers) can amplify harmonic currents and voltages in the electrical network. This amplification can cause nuisance fuse operation and/or damage to electrical equipment including capacitors and other electronic devices. If power factor correction is required in the network where harmonic is present, please contact your nearest Square D/Schneider Electric sales office for assistance.

Table 4.44: Unfused 240 V 3 phase/ 60Hz unit [2]

#### Features:

- Heavy edge, slope metallizations and wave-cut profile to ensure high inrush current capabilities.
- Special resistivity and profile metallization for better self-healing and enhanced life (up to 130,000 hours).
- Unique safety feature which disconnects the capacitors at the end of their useful life electrically.
- Less than 0.5w/kVAR losses, including discharage resistors.
- Constructed with a dry type metalized polypropylene capacitor element with no liquid dielectrics.
- Can be easily mounted inside panels or in a stand alone configuration.

## Table 4.43: Unfused 208 V 3 phase/ 60Hz unit [2]

| kVAR rating | Regular duty<br>Indoor NEMA 1<br>unit | Rated<br>Current (A) | Recommen-<br>ded copper<br>wire size[3] | Recommended circuit<br>protection<br>device rating[4] |                    |
|-------------|---------------------------------------|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------|
| @ 208 V     | Catalog<br>Number                     | @ 208 V              | AWG                                     | Fuse                                                  | Circuit<br>breaker |
| 2           | PFCD1002                              | 6.3                  | 14                                      | 15                                                    | 15                 |
| 5           | PFCD1005                              | 13.6                 | 10                                      | 30                                                    | 20                 |
| 6           | PFCD1006                              | 17.7                 | 10                                      | 40                                                    | 25                 |
| 7.5         | PFCD1007                              | 20.9                 | 8                                       | 45                                                    | 30                 |
| 10          | PFCD1010                              | 27.1                 | 8                                       | 60                                                    | 40                 |
| 13          | PFCD1013                              | 35.4                 | 6                                       | 75                                                    | 50                 |
| 15          | PFCD1015                              | 41.7                 | 4                                       | 90                                                    | 60                 |
| 17          | PFCD1017                              | 48                   | 4                                       | 100                                                   | 70                 |
| 21          | PFCD1021                              | 59.4                 | 3                                       | 125                                                   | 90                 |
| 25          | PFCD1025                              | 68.8                 | 2                                       | 150                                                   | 100                |
| 27          | PFCD1027                              | 75.1                 | 2                                       | 150                                                   | 110                |
| 30          | PFCD1030                              | 83.4                 | 1                                       | 175                                                   | 125                |
| 34          | PFCD1033                              | 93.8                 | 1/0                                     | 200                                                   | 150                |
| 37.5        | PFCD1037                              | 104.3                | 2/0                                     | 225                                                   | 150                |
| 41          | PFCD1040                              | 114.7                | 2/0                                     | 250                                                   | 175                |
| 45          | PFCD1045                              | 125.1                | 3/0                                     | 250                                                   | 175                |
| 49          | PFCD1048                              | 135.5                | 4/0                                     | 300                                                   | 200                |
| 53          | PFCD1053                              | 147                  | 4/0                                     | 300                                                   | 225                |
| 60          | PFCD1060                              | 168.9                | 300 kcmil                               | 350                                                   | 250                |
| 70          | PFCD1070                              | 198.1                | 350 kcmil                               | 450                                                   | 300                |
| 80          | PFCD1080                              | 222                  | 500 kcmil                               | 450                                                   | 350                |

| kVAR rating | Regular duty<br>Indoor NEMA<br>1 unit | Rated<br>Current (A) | Recom-<br>mended<br>copper<br>wire size[3] | Recommended circuit<br>protection<br>device rating[4] |                    |
|-------------|---------------------------------------|----------------------|--------------------------------------------|-------------------------------------------------------|--------------------|
| @ 240 V     | Catalog<br>Number                     | @ 240 V              | AWG                                        | Fuse                                                  | Circuit<br>breaker |
| 3           | PFCD2003                              | 7.2                  | 14                                         | 15                                                    | 15                 |
| 6           | PFCD2006                              | 15.6                 | 10                                         | 35                                                    | 25                 |
| 8           | PFCD2008                              | 20.5                 | 8                                          | 45                                                    | 30                 |
| 10          | PFCD2010                              | 24.1                 | 8                                          | 50                                                    | 35                 |
| 13          | PFCD2013                              | 31.3                 | 6                                          | 70                                                    | 45                 |
| 15          | PFCD2015                              | 36.1                 | 6                                          | 75                                                    | 50                 |
| 17.5        | PFCD2017                              | 40.9                 | 6                                          | 90                                                    | 60                 |
| 20          | PFCD2020                              | 48.1                 | 4                                          | 100                                                   | 70                 |
| 22.5        | PFCD2023                              | 55.3                 | 3                                          | 125                                                   | 80                 |
| 25          | PFCD2025                              | 61.4                 | 3                                          | 125                                                   | 90                 |
| 27.5        | PFCD2028                              | 68.6                 | 2                                          | 150                                                   | 100                |
| 30          | PFCD2030                              | 72.2                 | 2                                          | 150                                                   | 100                |
| 32.5        | PFCD2033                              | 79.4                 | 1                                          | 175                                                   | 110                |
| 37.5        | PFCD2036                              | 86.6                 | 1                                          | 175                                                   | 125                |
| 40          | PFCD2040                              | 96.2                 | 1/0                                        | 200                                                   | 150                |
| 45          | PFCD2045                              | 108.3                | 2/0                                        | 225                                                   | 150                |
| 50          | PFCD2050                              | 120.3                | 2/0                                        | 250                                                   | 175                |
| 60          | PFCD2060                              | 144.4                | 4/0                                        | 300                                                   | 200                |
| 70          | PFCD2070                              | 169.6                | 300 kcmil                                  | 350                                                   | 250                |
| 80          | PFCD2080                              | 194.9                | 350 kcmil                                  | 400                                                   | 300                |
| 90          | PFCD2090                              | 218.9                | 400 kcmil                                  | 450                                                   | 300                |
| 100         | PFCD2100                              | 239.4                | 500 kcmil                                  | 500                                                   | 350                |

#### Table 4.45: Unfused 480V 3 phase/ 60Hz unit [2]

| kVAR rating | Regular duty<br>Indoor<br>NEMA 1 unit | Rated<br>Current (A) | Recommen-<br>ded copper<br>wire size[3] | Recommended circuit<br>protection<br>device rating[4] |                    |
|-------------|---------------------------------------|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------|
| @ 480 V     | Catalog<br>Number                     | @ 480 V              | AWG                                     | Fuse                                                  | Circuit<br>breaker |
| 6           | PFCD4006                              | 7.2                  | 14                                      | 15                                                    | 15                 |
| 8           | PFCD4008                              | 10.2                 | 12                                      | 20                                                    | 15                 |
| 10          | PFCD4010                              | 12                   | 12                                      | 25                                                    | 20                 |
| 12.5        | PFCD4012                              | 15                   | 10                                      | 30                                                    | 25                 |
| 15          | PFCD4015                              | 18                   | 10                                      | 40                                                    | 30                 |
| 17          | PFCD4017                              | 19.8                 | 8                                       | 40                                                    | 30                 |
| 20          | PFCD4020                              | 24                   | 8                                       | 50                                                    | 35                 |
| 25          | PFCD4025                              | 30                   | 6                                       | 60                                                    | 45                 |
| 27.5        | PFCD4027                              | 33                   | 6                                       | 70                                                    | 50                 |
| 30          | PFCD4030                              | 36                   | 6                                       | 75                                                    | 50                 |
| 33          | PFCD4033                              | 39.6                 | 6                                       | 80                                                    | 60                 |
| 35          | PFCD4035                              | 42                   | 4                                       | 90                                                    | 60                 |
| 40          | PFCD4040                              | 48                   | 4                                       | 100                                                   | 70                 |
| 45          | PFCD4045                              | 54                   | 4                                       | 110                                                   | 75                 |
| 50          | PFCD4050                              | 60                   | 3                                       | 125                                                   | 90                 |
| 60          | PFCD4060                              | 72                   | 2                                       | 150                                                   | 100                |
| 65          | PFCD4065                              | 78                   | 1                                       | 175                                                   | 110                |
| 70          | PFCD4070                              | 84                   | 1                                       | 175                                                   | 125                |
| 75          | PFCD4075                              | 90                   | 1/0                                     | 200                                                   | 125                |
| 80          | PFCD4080                              | 96                   | 1/0                                     | 200                                                   | 150                |
| 90          | PFCD4090                              | 108                  | 2/0                                     | 225                                                   | 150                |
| 100         | PFCD4100                              | 120                  | 2/0                                     | 250                                                   | 175                |
| 125         | PFCD4125                              | 150                  | 250                                     | 300                                                   | 225                |
| 150         | PFCD4150                              | 180                  | 300                                     | 400                                                   | 250                |
| 175         | PFCD4175                              | 210                  | 400                                     | 450                                                   | 300                |
| 200         | PFCD4200                              | 240                  | 500                                     | 500                                                   | 350                |

#### Table 4.46: Unfused 600V 3 phase/ 60Hz unit [2]

| kVAF<br>rating | <b>R</b><br>9 | Regular<br>duty<br>Indoor<br>NEMA 1<br>unit | Rated<br>Current (A) | Recommen-<br>ded copper<br>wire size[3] | Recommended circuit<br>protection<br>device rating[4] |                    |
|----------------|---------------|---------------------------------------------|----------------------|-----------------------------------------|-------------------------------------------------------|--------------------|
| 600 \          | /             | Catalog<br>Number                           | @ 600 V              | AWG                                     | Fuse                                                  | Circuit<br>Breaker |
| 10             |               | PFCD6010                                    | 9.6                  | 12                                      | 20                                                    | 15                 |
| 15             |               | PFCD6015                                    | 14.4                 | 10                                      | 30                                                    | 20                 |
| 20             |               | PFCD6020                                    | 19.2                 | 10                                      | 40                                                    | 30                 |
| 23             |               | PFCD6022                                    | 22.1                 | 8                                       | 50                                                    | 35                 |
| 25             |               | PFCD6025                                    | 24                   | 8                                       | 50                                                    | 35                 |
| 27             |               | PFCD6027                                    | 26                   | 8                                       | 50                                                    | 40                 |
| 30             |               | PFCD6030                                    | 28.8                 | 8                                       | 60                                                    | 45                 |
| 35             |               | PFCD6035                                    | 33.6                 | 6                                       | 70                                                    | 50                 |
| 40             |               | PFCD6040                                    | 38.4                 | 6                                       | 80                                                    | 60                 |
| 45             |               | PFCD6045                                    | 43.2                 | 4                                       | 90                                                    | 60                 |
| 50             |               | PFCD6050                                    | 48                   | 4                                       | 100                                                   | 70                 |
| 60             |               | PFCD6060                                    | 57.6                 | 3                                       | 125                                                   | 80                 |
| 70             |               | PFCD6070                                    | 67.2                 | 3                                       | 150                                                   | 100                |
| 75             |               | PFCD6075                                    | 72                   | 2                                       | 150                                                   | 100                |
| 80             |               | PFCD6080                                    | 76.8                 | 1                                       | 150                                                   | 110                |
| 90             |               | PFCD6090                                    | 86.4                 | 1                                       | 175                                                   | 125                |
| 100            |               | PFCD6100                                    | 96                   | 1/0                                     | 200                                                   | 150                |
| 125            |               | PFCD6125                                    | 120                  | 3/0                                     | 250                                                   | 175                |
| 150            |               | PFCD6150                                    | 144                  | 4/0                                     | 300                                                   | 200                |
| 175            |               | PFCD6175                                    | 168                  | 300 kcmil                               | 350                                                   | 250                |

For fused unit, add suffix "F" to the existing part number. Consult Schneider Electric sales office for pricing [2]

Conductor should be copper and rated 90 °C min. Refer to local electrical codes for proper wire size [3]

[4] Consult local electrical codes for proper sizing of molded case circuit breaker frame or disconnect switch rating POWER MONITORING AND CONTROL

© 2017 Schneider Electric All Rights Reserved 6/20/2017





The AV5000 is suitable for use where harmonic generating loads are less than 15% of the total connected load (AV5000 shown here).



AV 6000 Capacitor Bank

## Low Voltage Standard Automatic Capacitor Banks

The AV5000 standard automatic power factor correction banks are designed for centralized power factor correction to supply varying amounts of reactive power required to compensate for changing load conditions. The AV5000 banks are ideally suited for facility electrical distribution systems with TDD (total harmonic current distortion) <= 5% and THD(V) (total harmonic voltage distortion) <= 5%. An advanced power factor controller measures plant power factor via a single remote CT. Plus, it switches capacitor modules in and out of service to maintain a user selected target power factor.

#### Main Features:

- Modular construction; free standing QED switchboard enclosures (30wx36dx90h) and allow for easy future expansion
- Rugged design units are constructed with removable steel panels over heavy gauge steel frame
- Standard offering available up to 400 kVAR at 208 Vac, 1000 kVAR at 480 or 600 Vac
- · Main lugs or main breaker section at your choice
- Dry capacitor element design eliminates risk of fluid leakage, environmental hazard and drip pans
- Capacitor rated contactors are designed specifically for the switching of capacitive currents and feature a patented capacitor precharge circuit that exceeds air-core reactor transient dampening
- Different power factor controller options provide a choice in functionality and control sophistication
- Backlit display on controller displays actual power factor (PF), alarms, number of steps energized and much more
- Available in NEMA 1 and NEMA 3R enclosures

## Low Voltage Anti-Resonant and Filtering Automatic Capacitor Banks

ReactiVar AV6000 anti-resonant and AV7000 harmonic filtering automatic switched capacitor banks are specifically designed for networks containing harmonic energies which would otherwise damage standard fixed or automatic capacitor banks.

The problem: Harmonics are caused by non-linear loads such as variable frequency drives, motor soft starters, welders, uninterruptable power supplies, robotics, PLCs and other electronic devices. Harmonics are higher-than-60 Hz current and voltage components in the electrical distribution system. Capacitors are a low impedance path for these higher frequency components and thus absorb the harmonic energies. Combinations of capacitors and system inductances (motors and transformers) can form series and parallel tuned circuits which can resonate at certain frequencies. The harmonics caused by non-linear loads can excite a standard capacitor bank into resonance. The resonance can magnify currents and voltages, causing systems.

The Solution: Anti-Resonant Automatic Capacitor Banks The AV6000 antiresonance capacitor bank's primary function is power factor correction. Iron core reactors are added in series with the capacitor modules. The 3 phase reactors are custom designed and manufactured under tight tolerance specifically for the AV6000. The reactors tune the bank below the first dominant harmonic (usually the 5th, or 300 Hz). Below the tuning point, the system appears capacitive and thus corrects power factor. Above the tuning point, the system appears inductive and thus resonance is minimized. The AV6000 design has the added advantage of removing up to 50% of the 5th harmonic to reduce overall voltage distortion.

**Harmonic Filtering Automatic Capacitor Banks** Although the AV7000 looks identical to the AV6000, its primary function is harmonic mitigation, with power factor correction being a secondary benefit. The distinction between an AV6000 and an AV7000 is the tuning point. By definition, if the tuning point of the capacitor/reactor combination is within  $\pm 10\%$  of the target harmonic it is intended to absorb, it is referred to as a filter. If the tuning point is outside the  $\pm 10\%$  limit, it is referred to as an anti-resonant system. Schneider Electric power quality solution experts should be consulted prior to recommending AV7000 to customers.

#### Main Features:

- Standard offering available up to 480 kVAR at 208 V, 1200 kVAR at 480 or 600 Vac
- Capacitor modules are designed with higher than standard voltage and current ratings to provide long life on systems with high harmonic energies. Reactors are designed to operate at 115 °C rise over a maximum 40 °C ambient temperature.
- In addition to the standard features provided in the AV5000 systems, the reactors in the AV6000 and AV7000 have an embedded thermistor temperature detector. The stage will shut down and annunciate if the reactor is overheated, usually a result of excessive harmonic energies

Application Assistance: Schneider Electric power quality experts can provide engineering assistance for the application of capacitors in harmonic rich environments. Specialists can assess the likelihood of application problems and arrange for more detailed study if required. Solutions can include computer modeling and system simulation. Our application engineers can arrange for systems studies, provide custom engineering proposal, perform installation and commissioning, as required by the application. Please contact Schneider Electric power quality experts or email us at pqc@squared.com.



## CT Selection

The current transformer is located on a phase A bus or cable at the main service entrance as illustrated in Diagram 1.

**CT catalog number: TRAI**····SC ♦ ♦ where ···· is current rate code of bus/cable and ♦ is window size code. Codes are listed in table 4.42. **e.g.** TRAI1000SC07 is a CT for 1000 A bus with 7"x4" window.

## Table 4.47: CT Selection Table

| Current Rating | g of Bus/Cable | Window Size              |                           |  |
|----------------|----------------|--------------------------|---------------------------|--|
| Amperes        | Rating Code    | 7" x 4" Size Code<br>◆ ◆ | 11" x 4" Size Code<br>♦ ♦ |  |
| 300            | 0300           | 07                       | 11                        |  |
| 400            | 0400           | 07                       | 11                        |  |
| 500            | 0500           | 07                       | 11                        |  |
| 600            | 0600           | 07                       | 11                        |  |
| 750            | 0750           | 07                       | 11                        |  |
| 800            | 0800           | 07                       | 11                        |  |
| 1000           | 1000           | 07                       | 11                        |  |
| 1200           | 1200           | 07                       | 11                        |  |
| 1500           | 1500           | 07                       | 11                        |  |
| 1600           | 1600           | 07                       | 11                        |  |
| 2000           | 2000           | 07                       | 11                        |  |
| 2500           | 2500           | 07                       | 11                        |  |
| 3000           | 3000           | 07                       | 11                        |  |
| 3500           | 3500           | 07                       | 11                        |  |
| 4000           | 4000           | 07                       | 11                        |  |
| 5000           | 5000           | N/A                      | 11                        |  |
| 6000           | 6000           | N/A                      | 11                        |  |

## Low Voltage Transient Free Reactive Compensation Capacitor Banks

Square D<sup>TM</sup> ReactiVar Transient Free Reactive Compensation (TFRC) anti-resonant (AT/BT6000) systems and filtering system (AT/BT7000) are ideally suited for use on electrical systems where connected equipment is extremely sensitive to variations in the supply voltage.

**The problem:** Capacitor systems featuring electromechanical contactors could generate voltage transients on the electrical network when they switch capacitor stages on/off, even when current limiting or tuning reactors are employed. Transients can impair the operation of sensitive equipment, including programmable logic controllers, variable speed drives, computers and UPS systems. In sensitive networks such as hospitals, data processing centers, airports and many manufacturing environments, any transient, however slight, may not be acceptable.

The solution: TFRC systems feature an advanced controller to precisely activate electronic switching elements to connect capacitor stages and avoid the creation of transients. Transient free switching also reduces wear on capacitors due to switching and will result in longer life for the overall capacitor system. With a response time of less than ten seconds to load changes, TFRC systems can reduce the kVAR or kVA demand quickly.

## Main Features:

- Standard offering up to 1350 kVAR at 480 Vac
- Transient free switching of capacitor steps
- Electronic switching elements yield an unlimited number of switching operations
- Different power factor controller options provide a choice in functionality and control sophistication
- Backlit display on controller displays actual PF, alarms, number of steps energized and much more
- Heavy duty dry capacitor element design provides no risk of fluid leakage, no environmental pollution and no need for drip pans
- The reactors have an embedded thermistor temperature detector. The stage will shut down and annunciate if the reactor is overheated which is usually a result of excessive harmonic energies
- Units are constructed with removable heavy duty steel panels over heavy gauge steel frame.
- Available in NEMA 1 and NEMA 3R enclosures.

4



AT6000 Transient Free Capacitor Bank

## **Medium Voltage Fixed Capacitors**



| Low Voltage Capacitor Bank General Specifications |                                                                    |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Voltage:                                          | 208, 240, 480, 600 Vac standard, other voltages available          |  |  |  |
| Ambient temperature:                              | -5 °C to 40 °C                                                     |  |  |  |
| Average temperature<br>limit:                     | <=40 °C within 24 hours, <35 °C over 1 year                        |  |  |  |
| Elevation:                                        | <=1800 meter (6000 feet)                                           |  |  |  |
| Humidity:                                         | 0–95% non-condensing                                               |  |  |  |
| Overvoltage limit:                                | 110% maximum (continuously)                                        |  |  |  |
| Dielectric withstand test level:                  | 2.15 times rated voltage or 1000 V,<br>whichever is higher for 10s |  |  |  |
| Overcurrent limit:                                | 135% maximum (continuously)                                        |  |  |  |
| Incoming:                                         | Top (standard), bottom.                                            |  |  |  |
| Main lug:                                         | Copper mechanical standard, compression optional                   |  |  |  |
| Main breaker (BT):                                | PowerPact™ with Micrologic™ trip unit. LI standard, LSI available  |  |  |  |
| Enclosure rating:                                 | NEMA 1 standard, N3R available                                     |  |  |  |
| Color:                                            | ANSI 49 standard, ANSI 61, ANSI 70<br>optional                     |  |  |  |
| Standards:                                        | CSA C22.2 No. 190, UL810                                           |  |  |  |

6" MINIMUM. IF SURFACE IS FLAMMABLE 24" MINIMUM 70"/88" APPROX REMOVABLE LIFTING LUGS 12" OR 24" PULL BOX  $\square$ 91.50 36 000 30.000

ADDITIONAL SECTIONS AS REQUIRED WIDTH

Typical low voltage capacitor bank dimension (reference only, subject to change without notice)

## **Medium Voltage Fixed Capacitors**

The ReactiVar MVC fixed capacitors are ideally suited for power factor correction in applications where the load does not change or where the capacitor is switched with the load, such as the load side of a motor contactor. ReactiVar capacitor sizes are available up to 300 kVAR as individual units, and up to 900 kVAR in banks.

#### Main Features:

- Standard rating up to 900 kVAR, 4800 V (for specials, consult factory)
- Extra low dielectric loss (<0.15w/kVAR), including discharge resistors ٠
- · Internally mounted discharge resistors
- Internally delta connected capacitor elements .
- Built to applicable NEMA, IEEE, and IEC standards
- Available in indoor (Type 1/12) and outdoor (Type 3R) enclosures
- Painted ASA 70 gray

#### **Application Note:**

Capacitors are low impedance path for the harmonic currents produced by variable frequency drives, motor soft starters, welders, computers, PLCs, robotics and other electronic equipment. These harmonic currents can cause the capacitor to overheat, and shorten its life. Furthermore, the resonant circuit formed by shurt capacitor to overlear, and system inductances (motors and transformers) can amplify harmonic currents and voltages in the electrical network. This amplification can cause nuisance fuse operation and/or damage to electrical equipment including capacitors and other electronic devices. If power factor correction is required in the network where harmonic is present, please contact your nearest Square D/Schneider Electric sales office for assistance.

ING AND

4



MVC systems are suitable for power factor correction of steady and harmonic-free motor loads.





MV5000 systems are suitable for use where harmonic generating loads are less than 15% of the total connected load.
 MV6000 systems are suitable for use where harmonic generating loads are less than 50% of the total connected load.
 MV7000 systems are suitable for use where harmonic generating loads exceed 50% of the total connected load.
 MVHVC High-Speed compensation systems are designed for reactive power compensation of rapidly fluctuating loads.

## Medium Voltage Metal Enclosed Capacitor Systems

The medium voltage capacitor systems are ideally suited for centralized power factor correction and/or harmonic filtering in applications. Various equipment topologies are available, from fixed stage to fully automatic—to cover project specific application, load characteristic and installation needs. ReactiVar brand covers metal enclosed systems built in North America (5/15 kV class). Global =S= Brand can be used for expanded voltage range.

## Main Features:

- Designed and built per applicable ANSI/NEMA/IEEE and/or IEC standards
- Standard metal enclosures available up to 20 mVAR, up to 34.5 kV, 50/60 Hz  $\,$
- Steel or Aluminum based enclosure bays
- Externally or internally fused capacitors with excellent life due to high temperature withstand, small temperature rise, chemical stability, overvoltage and overcurrent withstand.
- · Current limiting capacitor fuses with blown fuse pop-up indicators
- Inrush current limiting reactors or tuned (anti-resonant or filtered) iron core reactors
- · Key interlocking system forces sequential operation of the controls,
- Fully rated three- or four-pole grounding switches
- Schneider Electric NRC12 Power factor controller provides user with friendly interface, superior performance, simplified installation and set-up procedure, and real time monitoring and protection features for the capacitor system.
- · Available in Type 1 indoor and 3R outdoor enclosure types

## **High Voltage Reactive Power Compensation Systems**

The high voltage reactive power compensation systems are ideally suited for installation at utility distribution and transmission grids. Various equipment topologies are available to cover project specific utility application, and installation needs. Typically these compensation systems are open style, rack mounted, installed in utility substation areas.

## Main Features:

- Custom designed and built per requested applicable standards
- Systems rated up to 230 kV, 50/60 Hz
- Internally fused capacitors with excellent life due to high temperature withstand, small temperature rise, chemical stability, overvoltage and overcurrent withstand.
- Double wye ungrounded configuration with neutral CT protection
- Inrush current limiting or tuned (anti-resonant or filtered) air core, open style reactors

Schneider Electric



## New! AccuSine PCS+ Active Harmonic Filter (AHF)

AccuSine PCS+ Active Harmonic Filter (AHF) injects harmonic current to cancel harmonic current in the electrical distribution system. This reduced harmonic level results in improved electrical network reliability and reduced operating cost. AccuSine PCS+ is simple to size, install, set up and operate. In addition, AccuSine PCS+ eliminates the complex harmonic compliance limit calculations and removes nuisance harmonics from the electrical network.

## The Problem:

Power electronic devices that have rapid and frequent load variations have become abundant today due to their many process control related and energy saving benefits. However, they also bring a few major drawbacks to electrical distribution systems; harmonics and rapid change of reactive power requirement. Harmonics may disrupt normal operation of other devices and increase operating costs. Symptoms of problematic harmonic levels include overheating of transformers, motors, drives, cables, thermal tripping of protective devices and logic faults of digital devices. In addition, the life span of many devices can be reduced by elevated operating temperature.

#### The Solution:

The AccuSine PCS+ AHF provides the simplest and most effective means to mitigate harmonics, to reduce process related voltage fluctuations. The AccuSine PCS+ AHF actively injects opposite harmonics current on the source side of the load and it:

- Decreases harmonic related overheating of cables, switchgear and transformers
- Reduces downtime caused by nuisance thermal tripping of protective devices
- Increases electrical network reliability and reduces operating costs
- Corrects to the 51st harmonic, reduce harmonics level to meet IEEE 519, IEC 61000 3-4, and UK G5/4-1 standards.
- · Compensates entire network or specific loads depending on installation point

#### **Standard Features:**

- Real-time dynamic current injection for harmonic cancellation and VAR compensation (lead or lag power factor)
- Load balancing capability
- Parallel connection allows for easy retrofit and installation of multiple units for large networks
- Response to load fluctuations within 2 cycles for harmonics, 1/4 cycle for power factor or load balancing
- Full color touch screen HMI (Human Machine Interface)
- UL Type 1, UL Type 2, UL Type 12, IP31, and IP54 enclosures
- Seismic rated per ICC IBC and ASCE 7
- UL, CE, ABS, and CSA certified

## AccuSine PCS+ Sizing

For proper sizing of AccuSine units, contact the Schneider Electric sales office or e-mail powersolutions@schneider-electric.com. To expedite the product selection process, please have a single line diagram and/or details of the application including sizes of transformers, non-linear and linear loads, and any existing filters and capacitors.

#### Table 4.48: PCS+ Active Harmonic Filter Selection

| Harmonic and PF Correction (380–480 V models, 50/60 Hz) |                |                |                     |                              |                |       |             |
|---------------------------------------------------------|----------------|----------------|---------------------|------------------------------|----------------|-------|-------------|
| Detect Current (A)                                      |                |                |                     | <b>Enclosure Information</b> |                |       | Mainhe (ka) |
| Rated Current (A)                                       | Frequency (Hz) | Catalog Number | Rating              | Style                        | Cable Entry    | Frame | weight (kg) |
|                                                         |                | PCSP060D5IP00  | IP00 (UL Type Open) | Wall Mount                   | Bottom         | 1     | 88          |
|                                                         | PCSP060D5N2    | UL Type 2      |                     |                              |                | 277   |             |
| 60                                                      | 60 50/60       | PCSP060D5IP31  | IP31                | Eloor Standing               | Top or Bottom  | 2     | 211         |
|                                                         |                | PCSP060D5N12   | UL Type 12          | 1 Ioor Standing              | TOP OF BOLLOTT | 2     | 200         |
|                                                         |                | PCSP060D5IP54  | IP54                |                              |                |       | 200         |
|                                                         |                | PCSP120D5IP00  | IP00 (UL Type Open) | Wall Mount                   | Bottom         | 3     | 113         |
|                                                         |                | PCSP120D5N2    | UL Type 2           |                              |                |       | 207         |
| 120 50/60                                               | PCSP120D5IP31  | IP31           | Eloor Standing      | Top or Bottom                | 4              | 287   |             |
|                                                         |                | PCSP120D5N12   | UL Type 12          |                              | Top of Bottom  | 4     | 202         |
|                                                         |                | PCSP120D5IP54  | IP54                |                              |                |       | 293         |
|                                                         |                | PCSP200D5IP00  | IP00 (UL Type Open) | Wall Mount                   | Bottom         | 5     | 171         |
|                                                         | Γ Γ            | PCSP200D5N2    | UL Type 2           |                              |                |       | 207         |
| 200                                                     | 50/60          | PCSP200D5IP31  | IP31                | Floor Standing               | Top or Bottom  | 6     | 397         |
|                                                         | Γ Γ            | PCSP200D5N12   | UL Type 12          | r ioor Stanung               | TOP OF BOLLOIN | 6     | 402         |
|                                                         |                | PCSP200D5IP54  | IP54                |                              |                |       | 402         |
|                                                         |                | PCSP300D5IP00  | IP00 (UL Type Open) | Wall Mount                   | Bottom         | 7     | 210         |
|                                                         |                | PCSP300D5N2    | UL Type 2           |                              |                |       | 422         |
| 300                                                     | 50/60          | PCSP300D5IP31  | IP31                | Eloor Standing               | Top or Bottom  | •     | 422         |
|                                                         |                | PCSP300D5N12   | UL Type 12          | r ioor Stariulity            | TOP OF BOLLOIN | °     | 426         |
| I F                                                     | PCSP300D5IP54  | IP54           |                     |                              |                | 430   |             |

NOTE: Contact Schneider Electric sales office for other voltage models.

ъ



## New AccuSine PFV+ Active Harmonic Filter (AHF)

Accusine PFV+ is a very simple and effective means to eliminate leading or lagging power factor, reduce voltage fluctuations, enhance equipment operating life, and improve system power capacity. AccuSine PFV+ offers many features in one package that others require multiple models to accomplish.

- AccuSine PFV+ can help you solve:
- Power factor
- Imbalance (specifically important for motor applications)
- Voltage stability (such as localized photovoltaic networks)
- Flicker
- AccuSine PFV+ Sizing

For proper sizing of AccuSine units, contact the Schneider Electric sales office or e-mail powersolutions@schneider-electric.com. To expedite the product selection process, please have a single line diagram and/or details of the application including sizes of transformers, non-linear and linear loads, and any existing filters and capacitors.

#### Table 4.49: AccuSine PFV+ Selection

| PF Correction and Load Balancing (380-480V models 50/60Hz) |               |                |                     |                       |                |             |             |
|------------------------------------------------------------|---------------|----------------|---------------------|-----------------------|----------------|-------------|-------------|
| Rated Current Erection ov (Hz)                             |               | Catalog Number |                     | Enclosure Information |                |             | Moight (kg) |
| (A) requeitcy (12)                                         |               | Rating         | Style               | Cable Entry           | Frame          | weight (kg) |             |
|                                                            |               | EVCP060D5IP00  | IP00 (UL Type Open) | Wall Mount            | Bottom         | 1           | 88          |
|                                                            |               | EVCP060D5N2    | UL Type 2           |                       |                |             | 277         |
| 60                                                         | 50/60         | EVCP060D5IP31  | IP31                | Eleor Standing        | Top or Bottom  | 2           | 211         |
|                                                            |               | EVCP060D5N12   | UL Type 12          | Tibol Standing        | TOP OF BOLLOTT | 2           | 280         |
|                                                            |               | EVCP060D5IP54  | IP54                |                       |                |             | 280         |
|                                                            |               | EVCP120D5IP00  | IP00 (UL Type Open) | Wall Mount            | Bottom         | 3           | 113         |
| 120 50/60                                                  | EVCP120D5N2   | UL Type 2      |                     |                       |                | 297         |             |
|                                                            | EVCP120D5IP31 | IP31           | Floor Standing      | Top or Bottom         | 4              | 201         |             |
|                                                            | EVCP120D5N12  | UL Type 12     | r loor otanding     | TOP OF DOLLOTT        | 7              | 203         |             |
|                                                            |               | EVCP120D5IP54  | IP54                |                       |                |             | 200         |
|                                                            |               | EVCP200D5IP00  | IP00 (UL Type Open) | Wall Mount            | Bottom         | 5           | 171         |
|                                                            |               | EVCP200D5N2    | UL Type 2           |                       |                |             | 307         |
| 200                                                        | 50/60         | EVCP200D5IP31  | IP31                | Floor Standing        | Top or Bottom  | 6           | 391         |
|                                                            |               | EVCP200D5N12   | UL Type 12          | r loor otanding       | TOP OF DOMONT  | 0           | 402         |
|                                                            |               | EVCP200D5IP54  | IP54                |                       |                |             | 402         |
|                                                            |               | EVCP300D5IP00  | IP00 (UL Type Open) | Wall Mount            | Bottom         | 7           | 210         |
|                                                            |               | EVCP300D5N2    | UL Type 2           |                       |                |             | 422         |
| 300 50/60                                                  | EVCP300D5IP31 | IP31           | Eloor Standing      | Top or Bottom         | 0              | 422         |             |
|                                                            |               | EVCP300D5N12   | UL Type 12          |                       | TOP OF DOLLOTT | 0           | 436         |
|                                                            | EVCP300D5IP54 | IP54           |                     |                       |                | 400         |             |

## AccuSine+ Wall Mount Conversion Kit

 Converts IP00 (UL Type Open) to IP20 (UL Type 1) wall mounted enclosed assemblies.

 Includes HMI mounting plate and cable entry enclosure for mounting on the bottom of the IP00 assemblies.

#### Table 4.50: AccuSine PCS+ and AccuSine PFV+ Exterior Dimensions

| Frame | Exterior Dimensions |            |  |  |
|-------|---------------------|------------|--|--|
| Size  | Height (mm)         | Width (mm) |  |  |
| 1     | 1300                | 421        |  |  |
| 2     | 2092                | 800        |  |  |
| 3     | 1400                | 421        |  |  |
| 4     | 2089                | 800        |  |  |
| 5     | 1323                | 582        |  |  |
| 6     | 2089                | 900        |  |  |
| 7     | 1560                | 582        |  |  |
| 8     | 2092                | 900        |  |  |

## Table 4.51: AccuSine+ Wall Mount Kits

| Cotolog Number | A                  | ssembled Dim | IP20<br>Assembly | Cable Entry<br>Enclosure |             |             |
|----------------|--------------------|--------------|------------------|--------------------------|-------------|-------------|
|                | Unit Rating<br>(A) | Height       | Width            | Depth                    | Weight (kg) | Weight (kg) |
| PCSPWMKIT60A   | 60                 | 1530         | 421              | 349                      | 97.3        | 8.7         |
| PCSPWMKIT120A  | 120                | 1730         | 421              | 384                      | 122.0       | 9.3         |
| PCSPWMKIT300A  | 200                | 1642         | 575              | 435                      | 180.0       | 8.6         |
| PCSPWMKIT300A  | 300                | 1882         | 575              | 435                      | 218.6       | 8.6         |





**Round Split-Core Current Transformer (CT) Selection:** Two remote current transformers (CT) are required for three phase loads. Three CT's are required for networks with line to neutral loads. Depending on installation, additional CTs may be required. Additional sizes are available.

### Table 4.52: Round Split-Core CT—UL Recognized

| Ampacity | Catalog  | Γ | Dimensio | ns            | Weight |      | Accuracy | Burden<br>Capacity | Secondary |   |
|----------|----------|---|----------|---------------|--------|------|----------|--------------------|-----------|---|
|          | Number   |   | in       | mm            | lbs    | kg   | Class    | (VA)               | Current   |   |
|          |          | Α | 4        | 101           |        |      |          |                    |           |   |
| 1000     | CT10008C | В | 1.25     | 32            | 2.5    | 1 75 | 4        | 10                 | F         |   |
| 1000     | CT1000SC | С | 1.5      | 38            | 3.5    | 1.75 | I        | 10                 | 5         |   |
|          |          | D | 6.5      | 165           |        |      |          |                    |           |   |
|          |          | Α | 6        | 152           |        |      |          |                    |           |   |
| 2000     | CT2000SC | В | 1.25     | 32            | 4.25   | 1 00 | 1        | 1 45               | 5         |   |
| 3000     | 01300030 | С | 1.5      | 38            | 4.25   | 1.90 | 90 1     |                    |           |   |
|          |          | D | 8.5      | 216           |        |      |          |                    |           |   |
|          |          | А | 8        | 203           |        |      |          |                    |           |   |
| 5000     | CTFC-    | В | 1.25     | 32            |        |      | 0.50     | 4                  | 45        | F |
| 5000     | L500058  | С | 1.5      | 38 5.5 2.50 1 | 1 45   | 5    |          |                    |           |   |
|          |          | D | 10.5     | 267           |        |      |          |                    |           |   |



#### Main Features:

- Real-time reactive power compensation for transient or cyclical loads
- Infinite VAR resolution
- Transient free compensation
- · Improves voltage stability, reduces flicker
- Constructed with 12 gauge steel frame

## Hybrid VAR Compensator (HVC)

The Hybrid VAR Compensator (HVC) is ideally suited for industrial facilities with power quality or production problems caused by rapidly changing reactive power demands typically associating with highly cyclical loads such as welders, mining conveyors and heavy stamping machines.

**The Problem:** Rapid reactive power changes demand timely reactive power (VAR) compensation. Lack of timely and adequate VAR compensation can lead to voltage fluctuations in the electrical distribution system, impacting equipment operation, as well as product quality.

Traditional capacitor systems have a minimum response time of five to thirty seconds for load fluctuations. As a result of this limitation, uncompensated reactive power demand by cyclical loads can produce voltage instability, cause flicker, increase losses, and result poor power factor which reduces the electric supply capacity. Problems can include:

- Poor weld quality or reduced weld line productivity (due to restrikes or interlock weld controls)
- Failure to start motor loads (due to voltage sag on startup)
- Undervoltage tripping of sensitive loads (Robots, PLCs, VFDs)
- Lighting flicker and/or HID lighting shutdown
- Overloaded distribution equipment (cyclical current pulses may exceed the rated current of the distribution equipment)
- Poor power factor and associated utility demand charges

**The Solution:** The Hybrid VAR Compensator is ideally suited for ultra fast reactive power compensation in many low and medium voltage distribution networks containing highly transient loads where conventional systems are not suitable.

The HVC employs a fixed or automatic capacitor bank to provide reactive power at all times, while AccuSine PFV+ adjusts the output to meet system reactive power requirement in timely manner. AccuSine PFV+ provides dynamic VAR injection to meet reactive power requirement within 1/4 cycle, reduce voltage sags created by inductive load switching, welding operation, etc.

HVC systems can alleviate most of the problems created by cyclical loads that require large amount of reactive power for short duration. HVC system can be applied in the low voltage and medium voltage system from 480 V up to 33 kV.

**Unique, cost-effective construction:** The ReactiVar HVC is a custom engineered product designed for specific reactive power compensation requirements. It consists of both passive and active components. The passive component may consist of capacitors only or include tuned reactors. Depending on the application, the passive portion may include contactor or solid state switching device to permit some adjustment of the passive elements. The active component is provided by Schneider Electric's AccuSine PFV+ unit. HVC systems also can prevent resonance by including custom designed iron core reactors in series with each three phase capacitor module when required. The series reactor/capacitor combinations prevent resonance by turning the network below the first dominant harmonic (usually the 5th and 300 Hz). In doing so, HVC can also

The HVC employs a fixed capacitor bank to inject leading reactive current (leading kVAR) into the network at all times, and an AccuSine PFV+ unit to precisely adjust the total output of the HVC according to the load reactive power demand profile. When load reactive demand is zero, the AccuSine PFV+ injects lagging reactive current to cancel the leading reactive current of the fixed capacitor bank such that the total output of the HVC is minimized. As the load kVAR demand increases, the AccuSine PFV+ adjusts its output such that the total output of the HVC precisely matches the load demand. If load demand increases above the fixed capacitor bank capability, then the AccuSine PFV+ injects leading reactive current. This continues until the full leading kVAR capacity of the AccuSine PFV+ is met. Thus, the HVC total output provides leading kVAR compensation to match load demand.

To optimize system design, Schneider Electric expert will normally need to take real-time measurements on the network site. Please contact Schneider Electric power quality experts or email us at powersolutions@schneider-electric.com.







Plinth for Floor Mounting

## VarSet Low Voltage Capacitor Banks

|             |                             | Standard VLVAW2N | Standard VLVAW3N | Detuned VLVAF4P/<br>VLVFF4P |  |
|-------------|-----------------------------|------------------|------------------|-----------------------------|--|
|             | Lugs                        |                  | 125 to 250 KVAR  |                             |  |
| 480 V 60 Hz | Incoming Circuit<br>Breaker | 25 to 100 KVAR   | 125 to 300 KVAR  | 75 to 200 KVAR              |  |
|             | Lugs                        |                  |                  |                             |  |
| 600 V 60 Hz | Incoming Circuit<br>Breaker | 25 to 100 KVAR   | 125 to 250 KVAR  | 75 to 200 KVAR              |  |

#### **Key Features**

- Auxiliary transformer (120 V) included
- Top cable entry and connections
- NEMA 1

#### Options

- · Incoming circuit breaker protection option with rotary handle
- · Plinth accessory for floor mounting
  - Included for VLVAF4P and VLVFF4P version.
  - For VLVAW2N and VLVAW3N versions, order the following: for Enclosure VLVAW2N: order NSYSPF8100 and NSYSPS4100 for Enclosure VLVAW3N: order NSYSPF10100 and NSYSPS4100
- Communication option: NRC12 controller + modbus communication module. Order your reference with addition of suffix C.
- Sprinkler proof: Included in 600 V offer

#### Table 4.53: General Characteristics

| VarSet                                      |                                       |           |  |  |
|---------------------------------------------|---------------------------------------|-----------|--|--|
| Environment                                 |                                       |           |  |  |
| Installation                                | Indoor                                |           |  |  |
| Humidity                                    | up to 95%                             |           |  |  |
| Maximum altitude                            | 2000 m                                |           |  |  |
| Enclosure                                   |                                       |           |  |  |
| Degree of protection                        | NEMA 1                                |           |  |  |
| Color                                       | RAL 7035                              |           |  |  |
| Degree of mechanical resistance             | IK10                                  |           |  |  |
| Steps                                       |                                       |           |  |  |
| Step protection                             | With circuit breaker                  |           |  |  |
| Electrical Characteristics                  |                                       |           |  |  |
| Connection type                             | Three-phase                           |           |  |  |
| Rower losses                                | < 2.5 W/kVAR without detuned reactors |           |  |  |
| Fower losses                                | < 6 W/kVAR with detuned reactors      |           |  |  |
| Tuning order (VarSet Detuned)               | 4.2 p.u. (60 Hz ref)                  |           |  |  |
| Maximum permissible over voltage            | 1.1 x Un, 8 h every 24 h              |           |  |  |
| Standards                                   |                                       |           |  |  |
| CSA 22.2 No. 190                            |                                       |           |  |  |
| UL810, UL508a                               |                                       |           |  |  |
| Incoming Connection Short Circuit<br>Rating | With Incoming Circuit Breaker         | With Lugs |  |  |
| Farm 05 to 400 10 (A D/a a second sec       | 65 kA (480 V)                         | 0514      |  |  |
| From 25 to 100 KVAR/no reactors             | 50 kA (600 V)                         | 25 KA     |  |  |
|                                             | 65 kA (480 V)                         | 0514      |  |  |
| From 125 to 300 KVAR/no reactors            | 50 kA (600 V)                         | 25 KA     |  |  |
|                                             | 65 kA (480 V)                         |           |  |  |
| With reactors                               | 50 kA (600 V)                         | 25 kA     |  |  |

**NOTE:** A Current Transformer is required for automatic Control. In order to have automatic control, a current transformer must be ordered in addition to the PFC bank. A current transformer (not included) is necessary to provide accurate network information to the VarSet's controller in order to apply the correct quantity of kVAR at any given time. It is recommended to choose a Split Core Current Transformer Model 270R from the following list of options.

**NOTE:** CT must be sized to your network and have a secondary rating of 5A. More details on the CT can be found in document 4210CT9701.

**NOTE:** When selecting a CT, be sure to use proper rating factors for ambient temperature conditions.

#### Table 4.54: Current Transformers

| Catalog Number | Current Rating (Amperes)[1] |
|----------------|-----------------------------|
| 270R-501       | 500:5                       |
| 270R-102       | 1000:5                      |
| 270R-152       | 1500:5                      |
| 270R-202       | 2000:5                      |
| 270R-302 [2]   | 3000:5                      |
| 270R-402 [2]   | 4000:5                      |

- [1] Rating Factor 30 °C/80 °F Ambient Temp. = 1.33 Rating Factor 55 °C/131 °F Ambient Temp. = 1.0
- [2] Models -302 and -402 Bating Factor 30 °C/101 °F Ambient Term
- Rating Factor 30 °C/80 °F Ambient Temp. = 1.0 Rating Factor 55 °C/131 °F Ambient Temp. = 0.75

## Schneider Electric schneider-electric.us

## VarSet Selection[3]

## Table 4.55: 480 V/60 Hz, Low-Polluted Network

| Standard | Catalog Numbers |                |  |  |
|----------|-----------------|----------------|--|--|
| Power    | Lugs            | Incoming CB    |  |  |
| 25       | VLVAW2N66025AA  | VLVAW2N66025AB |  |  |
| 50       | VLVAW2N66050AA  | VLVAW2N66050AB |  |  |
| 75       | VLVAW2N66075AA  | VLVAW2N66075AB |  |  |
| 100      | VLVAW2N66100AA  | VLVAW2N66100AB |  |  |
| 125      | VLVAW3N66125AA  | VLVAW3N66125AB |  |  |
| 150      | VLVAW3N66150AA  | VLVAW3N66150AB |  |  |
| 175      | VLVAW3N66175AA  | VLVAW3N66175AB |  |  |
| 200      | VLVAW3N66200AA  | VLVAW3N66200AB |  |  |
| 225      | VLVAW3N66225AA  | VLVAW3N66225AB |  |  |
| 250      | VLVAW3N66250AA  | VLVAW3N66250AB |  |  |
| 275      | VLVAW3N66275AB  | VLVAW3N66275AB |  |  |
| 300      | VLVAW3N66300AB  | VLVAW3N66300AB |  |  |

| Table 4.56: 600 V/60 Hz, Low-Polluted Network |                |                |  |  |  |
|-----------------------------------------------|----------------|----------------|--|--|--|
| Standard                                      | Catalog        | Numbers        |  |  |  |
| Power                                         | Lugs           | Incoming CB    |  |  |  |
| 25                                            | VLVAW2N76025AA | VLVAW2N76025AB |  |  |  |
| 50                                            | VLVAW2N76050AA | VLVAW2N76050AB |  |  |  |
| 75                                            | VLVAW2N76075AA | VLVAW2N76075AB |  |  |  |
| 100                                           | VLVAW2N76100AA | VLVAW2N76100AB |  |  |  |
| 125                                           | VLVAW3N76125AA | VLVAW3N76125AB |  |  |  |
| 150                                           | VLVAW3N76150AA | VLVAW3N76150AB |  |  |  |
| 175                                           | VLVAW3N76175AA | VLVAW3N76175AB |  |  |  |
| 200                                           | VLVAW3N76200AA | VLVAW3N76200AB |  |  |  |
| 225                                           | VLVAW3N76225AA | VLVAW3N76225AB |  |  |  |
| 250                                           | VLVAW3N76250AA | VLVAW3N76250AB |  |  |  |

## Table 4.57: 480 V/60 Hz, Polluted Network, Detuned Reactors

#### Catalog N Automatic Power Lugs Incoming CB VLVAF4P66075AA VLVAF4P66100AA 75 VLVAF4P66075AB 100 VLVAF4P66100AB 125 VLVAF4P66125AA VLVAF4P66125AB 150 VLVAF4P66150AA VLVAF4P66150AB VLVAF4P66175AA VLVAF4P66200AA Catalog 175 VLVAF4P66175AB VLVAF4P66200AB 200 Fixed ers Lugs Incoming CB Power VLVFF4P66075AA VLVFF4P66075AB 75 100 VLVFF4P66100AA VLVFF4P66100AB 125 VLVFF4P66125AA VLVFF4P66125AB 150 VLVFF4P66150AA VLVFF4P66150AB 175 VLVFF4P66175AA VLVFF4P66175AB 200 VLVFF4P66200AA VLVFF4P66200AB

## Table 4.58: 600 V/60 Hz, Polluted Network, Detuned Reactors

| Automatic | Catalog Numbers |                |  |
|-----------|-----------------|----------------|--|
| Power     | Lugs            | Incoming CB    |  |
| 75        | VLVAF4P76075AA  | VLVAF4P76075AB |  |
| 100       | VLVAF4P76100AA  | VLVAF4P76100AB |  |
| 125       | VLVAF4P76125AA  | VLVAF4P76125AB |  |
| 150       | VLVAF4P76150AA  | VLVAF4P76150AB |  |
| 175       | VLVAF4P76175AA  | VLVAF4P76175AB |  |
| 200       | VLVAF4P76200AA  | VLVAF4P76200AB |  |
| Fixed     | Catalog I       | Numbers        |  |
| Power     | Lugs            | Incoming CB    |  |
| 75        | VLVFF4P76075AA  | VLVFF4P76075AB |  |
| 100       | VLVFF4P76100AA  | VLVFF4P76100AB |  |
| 125       | VLVFF4P76125AA  | VLVFF4P76125AB |  |
| 150       | VLVFF4P76150AA  | VLVFF4P76150AB |  |
| 175       | VLVFF4P76175AA  | VLVFF4P76175AB |  |
| 200       | VLVFF4P76200AA  | VLVFF4P76200AB |  |

## Table 4.59: Physical and Electrical Steps (480 V and 600 V/60 Hz)

| Туре     | kVAR | Min Step | Resolution             | Num<br>Mechanical<br>Steps (CBs) | Num Electrical<br>Steps | Sequence | Electrical Steps (Resolution)             |
|----------|------|----------|------------------------|----------------------------------|-------------------------|----------|-------------------------------------------|
|          | 25   | 125      | 2x12,5                 | 2                                | 2                       | 1,111    | 12,5/25,0                                 |
|          | 50   | 125      | 2x12.5 + 1x25          | 3                                | 4                       | 1.1.2.2  | 12,5/25,0/37,5/50,0                       |
|          | 75   | 125      | 1x12,5 + 1x25 + 1x37,5 | 3                                | 6                       | 1,233    | 12,5/25,0/37,5/50,0/62,5/75,0             |
|          | 100  | 25       | 2x25 + 50              | 3                                | 4                       | 1,122    | 25/50/75/100                              |
|          | 125  | 25       | 1x25 + 2x50            | 3                                | 5                       | 1.2.2.2  | 25/50/75/100/125                          |
| Ctandard | 150  | 25       | 2x25 + 2x50            | 4                                | 6                       | 1.1.2.2  | 25/50/75/100/125/150                      |
| Standard | 175  | 25       | 1x25 + 3x50            | 4                                | 7                       | 1,222    | 25/50/75/100/125/150/175                  |
|          | 200  | 25       | 2x25 + 3x50            | 5                                | 5                       | 11,222   | 25/50/75/100/125/150/ 175/200             |
|          | 225  | 25       | 1x25 + 4x50            | 5                                | 9                       | 1.2.2.2  | 25/50/75/100/125/150/175/ 200/225         |
|          | 250  | 50       | 5x50                   | 5                                | 5                       | 1,111    | 50/100/150/200/250                        |
|          | 275  | 25       | 1x25 + 5x50            | 6                                | 11                      | 1,222    | 25/50/75/100/125/150/175/ 200/225/250/275 |
|          | 300  | 50       | 6x50                   | 6                                | 6                       | 1.1.1.1  | 50/100/150/200/250/300                    |
|          | 75   | 25       | 1x25 + 1x50            | 2                                | 3                       | 1,222    | 25/50/75                                  |
|          | 100  | 25       | 2x25 + 1x50            | 3                                | 4                       | 1,122    | 25/50/75/100                              |
| Detroved | 125  | 25       | 1x25 + 2x50            | 3                                | 5                       | 1.2.2.2  | 25/50/75/100/125                          |
| Detuned  | 150  | 25       | 2x25 + 2x50            | 4                                | 6                       | 1,122    | 25/50/75/100/125/150                      |
|          | 175  | 25       | 1x25 + 3x50            | 4                                | 7                       | 1.2.2.2  | 25/50/75/100/125/150/175                  |
|          | 200  | 50       | 4x50                   | 4                                | 4                       | 1,111    | 50/100/150/200                            |



## VarSet Dimensions and Weights

## Table 4.60: VLVAW2N

|        | VLVAW2N [4]        |
|--------|--------------------|
| Н      | 850 mm / 33.5 in.  |
| W      | 800 mm / 31.5 in.  |
| D      | 400 mm / 15.7 in.  |
| D1     | 1200 mm / 47.2 in. |
| Weight | 80 kg / 175 lbs.   |





VLVAW2N

0



## Table 4.61: VLVAW3N

|        | VLVAW3N [4]        |
|--------|--------------------|
| Н      | 1200 mm / 47.2 in. |
| W      | 1000 mm / 39.4 in. |
| D      | 400 mm / 15.7 in.  |
| D1     | 1400 mm / 55.1 in. |
| Weight | 125 kg / 275 lbs.  |
|        |                    |





VLVAW3N

## Table 4.62: VLVAF4P and VLVFF4P

|        | VLVAF4P / VLVFF4P  |
|--------|--------------------|
| Н      | 1200 mm / 47.2 in. |
| W      | 1300 mm / 51.2 in. |
| D      | 400 mm / 15.7 in.  |
| D1     | 1200 mm / 47.2 in. |
| Weight | 265 kg / 585 lbs.  |

